ترغب بنشر مسار تعليمي؟ اضغط هنا

57 - Fedor Ratnikov 2020
Design of new experiments, as well as upgrade of ongoing ones, is a continuous process in the experimental high energy physics. Since the best solution is a trade-off between different kinds of limitations, a quick turn over is necessary to evaluate physics performance for different techniques in different configurations. Two typical problems which slow down evaluation of physics performance for particular approaches to calorimeter detector technologies and configurations are: - Emulating particular detector properties including raw detector response together with a signal processing chain to adequately simulate a calorimeter response for different signal and background conditions. This includes combining detector properties obtained from the general Geant simulation with properties obtained from different kinds of bench and beam tests of detector and electronics prototypes. - Building an adequate reconstruction algorithm for physics reconstruction of the detector response which is reasonably tuned to extract the most of the performance provided by the given detector configuration. Being approached from the first principles, both problems require significant development efforts. Fortunately, both problems may be addressed by using modern machine learning approaches, that allow a combination of available details of the detector techniques into corresponding higher level physics performance in a semi-automated way. In this paper, we discuss the use of advanced machine learning techniques to speed up and improve the precision of the detector development and optimisation cycle, with an emphasis on the experience and practical results obtained by applying this approach to epitomising the electromagnetic calorimeter design as a part of the upgrade project for the LHCb detector at LHC.
56 - Fedor Ratnikov 2020
LHCb is one of the major experiments operating at the Large Hadron Collider at CERN. The richness of the physics program and the increasing precision of the measurements in LHCb lead to the need of ever larger simulated samples. This need will increa se further when the upgraded LHCb detector will start collecting data in the LHC Run 3. Given the computing resources pledged for the production of Monte Carlo simulated events in the next years, the use of fast simulation techniques will be mandatory to cope with the expected dataset size. In LHCb generative models, which are nowadays widely used for computer vision and image processing are being investigated in order to accelerate the generation of showers in the calorimeter and high-level responses of Cherenkov detector. We demonstrate that this approach provides high-fidelity results along with a significant speed increase and discuss possible implication of these results. We also present an implementation of this algorithm into LHCb simulation software and validation tests.
We present a new approach to identification of boosted neutral particles using Electromagnetic Calorimeter (ECAL) of the LHCb detector. The identification of photons and neutral pions is currently based on the geometric parameters which characterise the expected shape of energy deposition in the calorimeter. This allows to distinguish single photons in the electromagnetic calorimeter from overlapping photons produced from high momentum $pi^0$ decays. The novel approach proposed here is based on applying machine learning techniques to primary calorimeter information, that are energies collected in individual cells around the energy cluster. This method allows to improve separation performance of photons and neutral pions and has no significant energy dependence.
We propose a way to simulate Cherenkov detector response using a generative adversarial neural network to bypass low-level details. This network is trained to reproduce high level features of the simulated detector events based on input observables o f incident particles. This allows the dramatic increase of simulation speed. We demonstrate that this approach provides simulation precision which is consistent with the baseline and discuss possible implications of these results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا