ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemotherapy treatment usually involves the delivery of fluorouracil (5-Fu) together with other drugs through central venous catheters. Catheters and their connectors are increasingly coated (or impregnated) with silver or argentic alloys/compounds. Complications such as broken catheters are common, leading to additional suffering for patients and increased medical costs. Here, we uncover a likely cause of such failure through a study of the surface chemistry relevant to chemotherapy drug delivery, i.e. between 5-Fu and silver. We show that silver catalytically decomposes 5-Fu, releasing HF as a product. This reaction compromises the efficacy of the treatment, and at the same time, releases HF which is damaging to both patient and catheter. Our study not only reveals an important reaction which has so far been overlooked, but additionally allows us to propose that graphene coatings inhibit such a reaction and offer superior performance for cancer treatment applications.
Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the sigma band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cut-off in the Fermi-Dirac distributio n. They are therefore not expected for the $sigma$ band of graphene that has a binding energy of more than 3.5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cut-off in the density of $sigma$ states. The existence of the effect suggests a very weak coupling of holes in the $sigma$ band not only to the $pi$ electrons of graphene but also to the substrate electronic states. This is confirmed by the presence of such kinks for graphene on several different substrates that all show a strong coupling constant of lambda=1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا