ترغب بنشر مسار تعليمي؟ اضغط هنا

96 - Jaime E. Pineda 2014
The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimet er dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of $approx$50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.
We study the numerical convergence of hydrodynamical simulations of self-gravitating accretion discs, in which a simple cooling law is balanced by shock heating. It is well-known that there exists a critical cooling time scale for which shock heating can no longer compensate for the energy losses, at which point the disc fragments. The numerical convergence of previous results of this critical cooling time scale was questioned recently using Smoothed Particle Hydrodynamics (SPH). We employ a two-dimensional grid-based code to study this problem, and find that for smooth initial conditions, fragmentation is possible for slower cooling as the resolution is increased, in agreement with recent SPH results. We show that this non-convergence is at least partly due to the creation of a special location in the disc, the boundary between the turbulent and the laminar region, when cooling towards a gravito-turbulent state. Converged results appear to be obtained in setups where no such sharp edges appear, and we then find a critical cooling time scale of ~ 4 $Omega^{-1}$, where $Omega$ is the local angular velocity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا