ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent work showed neural-network-based approaches to reconstructing images from compressively sensed measurements offer significant improvements in accuracy and signal compression. Such methods can dramatically boost the capability of computational imaging hardware. However, to date, there have been two major drawbacks: (1) the high-precision real-valued sensing patterns proposed in the majority of existing works can prove problematic when used with computational imaging hardware such as a digital micromirror sampling device and (2) the network structures for image reconstruction involve intensive computation, which is also not suitable for hardware deployment. To address these problems, we propose a novel hardware-friendly solution based on mixed-weights neural networks for computational imaging. In particular, learned binary-weight sensing patterns are tailored to the sampling device. Moreover, we proposed a recursive network structure for low-resolution image sampling and high-resolution reconstruction scheme. It reduces both the required number of measurements and reconstruction computation by operating convolution on small intermediate feature maps. The recursive structure further reduced the model size, making the network more computationally efficient when deployed with the hardware. Our method has been validated on benchmark datasets and achieved the state of the art reconstruction accuracy. We tested our proposed network in conjunction with a proof-of-concept hardware setup.
An ultrafast single-pixel optical 2D imaging system using a single multimode fiber (MF) is proposed. The MF acted as the all-optical random pattern generator. Light with different wavelengths pass through a single MF will generator all-optical random speckle patterns, which have a low correlation of 0.074 with 0.1nm wavelength step from 1518.0nm to 1567.9nm. The all-optical random speckle patterns are perfect for compressive sensing (CS) imaging with the advantage of low cost in comparison with the conventional expensive pseudorandom binary sequence (PRBS). Besides, with the employment of photonic time stretch (PTS), light of different wavelengths will go through a single capsuled MF in time serial within a short pulse time, which makes ultrafast single-pixel all-optical CS imaging possible. In our work, the all-optical random speckle patterns are analyzed and used to perform CS imaging in our proposed system and the results shows a single-pixel photo-detector can be employed in CS imaging system and a 27 by 27 pixels image is reconstructed within 500 measurements. In our proposed imaging system, the fast Fourier transform (FFT) spatial resolution, which is a combination of multiple Gaussians, is analyzed. Considering 4 optical speckle patterns, the FFT spatial resolution is 50 by 50 pixels. This resolution limit has been obtained by removing the central low frequency components and observing the significant spectral power along all the radial directions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا