ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rosetta molecular modeling software package provides experimentally tested and rapidly evolving tools for the 3D structure prediction and high-resolution design of proteins, nucleic acids, and a growing number of non-natural polymers. Despite its free availability to academic users and improving documentation, use of Rosetta has largely remained confined to developers and their immediate collaborators due to the codes difficulty of use, the requirement for large computational resources, and the unavailability of servers for most of the Rosetta applications. Here, we present a unified web framework for Rosetta applications called ROSIE (Rosetta Online Server that Includes Everyone). ROSIE provides (a) a common user interface for Rosetta protocols, (b) a stable application programming interface for developers to add additional protocols, (c) a flexible back-end to allow leveraging of computer cluster resources shared by RosettaCommons member institutions, and (d) centralized administration by the RosettaCommons to ensure continuous maintenance. This paper describes the ROSIE server infrastructure, a step-by-step serverification protocol for use by Rosetta developers, and the deployment of the first nine ROSIE applications by six separate developer teams: Docking, RNA de novo, ERRASER, Antibody, Sequence Tolerance, Supercharge, Beta peptide design, NCBB design, and VIP redesign. As illustrated by the number and diversity of these applications, ROSIE offers a general and speedy paradigm for serverification of Rosetta applications that incurs negligible cost to developers and lowers barriers to Rosetta use for the broader biological community. ROSIE is available at http://rosie.rosettacommons.org.
The tertiary structures of functional RNA molecules remain difficult to decipher. A new generation of automated RNA structure prediction methods may help address these challenges but have not yet been experimentally validated. Here we apply four pred iction tools to a remarkable class of double glycine riboswitches that exhibit ligand-binding cooperativity. A novel method (BPPalign), RMdetect, JAR3D, and Rosetta 3D modeling give consistent predictions for a new stem P0 and kink-turn motif. These elements structure the linker between the RNAs double aptamers. Chemical mapping on the F. nucleatum riboswitch with SHAPE, DMS, and CMCT probing, mutate-and-map studies, and mutation/rescue experiments all provide strong evidence for the structured linker. Under solution conditions that separate two glycine binding transitions, disrupting this helix-junction-helix structure gives 120-fold and 6- to 30-fold poorer association constants for the two transitions, corresponding to an overall energetic impact of 4.3 pm 0.5 kcal/mol. Prior biochemical and crystallography studies from several labs did not include this critical element due to over-truncation of the RNA. We argue that several further undiscovered elements are likely to exist in the flanking regions of this and other RNA switches, and automated prediction tools can now play a powerful role in their detection and dissection.
Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron den sity under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated xtallography (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average Rfree factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا