ترغب بنشر مسار تعليمي؟ اضغط هنا

Upcoming beyond fifth generation (5G) communications systems aim at further enhancing key performance indicators and fully supporting brand new use cases by embracing emerging techniques, e.g., reconfigurable intelligent surface (RIS), integrated com munication, localization, and sensing, and mmWave/THz communications. The wireless intelligence empowered by state-of-the-art artificial intelligence techniques has been widely considered at the transceivers, and now the paradigm is deemed to be shifted to the smart control of radio propagation environment by virtue of RISs. In this article, we argue that to harness the full potential of RISs, localization and communication must be tightly coupled. This is in sharp contrast to 5G and earlier generations, where localization was a minor additional service. To support this, we first introduce the fundamentals of RIS mmWave channel modeling, followed by RIS channel state information acquisition and link establishment. Then, we deal with the connection between localization and communications, from a separate and joint perspective.
End-to-end (E2E) neural models are increasingly attracting attention as a promising modeling approach for mispronunciation detection and diagnosis (MDD). Typically, these models are trained by optimizing a cross-entropy criterion, which corresponds t o improving the log-likelihood of the training data. However, there is a discrepancy between the objectives of model training and the MDD evaluation, since the performance of an MDD model is commonly evaluated in terms of F1-score instead of word error rate (WER). In view of this, we in this paper explore the use of a discriminative objective function for training E2E MDD models, which aims to maximize the expected F1-score directly. To further facilitate maximum F1-score training, we randomly perturb fractions of the labels of phonetic confusing pairs in the training utterances of L2 (second language) learners to generate artificial pronunciation error patterns for data augmentation. A series of experiments conducted on the L2-ARCTIC dataset show that our proposed method can yield considerable performance improvements in relation to some state-of-the-art E2E MDD approaches and the conventional GOP method.
With the acceleration of globalization, more and more people are willing or required to learn second languages (L2). One of the major remaining challenges facing current mispronunciation and diagnosis (MDD) models for use in computer-assisted pronunc iation training (CAPT) is to handle speech from L2 learners with a diverse set of accents. In this paper, we set out to mitigate the adverse effects of accent variety in building an L2 English MDD system with end-to-end (E2E) neural models. To this end, we first propose an effective modeling framework that infuses accent features into an E2E MDD model, thereby making the model more accent-aware. Going a step further, we design and present disparate accent-aware modules to perform accent-aware modulation of acoustic features in a fine-grained manner, so as to enhance the discriminating capability of the resulting MDD model. Extensive sets of experiments conducted on the L2-ARCTIC benchmark dataset show the merits of our MDD model, in comparison to some existing E2E-based strong baselines and the celebrated pronunciation scoring based method.
Image harmonization aims to improve the quality of image compositing by matching the appearance (eg, color tone, brightness and contrast) between foreground and background images. However, collecting large-scale annotated datasets for this task requi res complex professional retouching. Instead, we propose a novel Self-Supervised Harmonization framework (SSH) that can be trained using just free natural images without being edited. We reformulate the image harmonization problem from a representation fusion perspective, which separately processes the foreground and background examples, to address the background occlusion issue. This framework design allows for a dual data augmentation method, where diverse [foreground, background, pseudo GT] triplets can be generated by cropping an image with perturbations using 3D color lookup tables (LUTs). In addition, we build a real-world harmonization dataset as carefully created by expert users, for evaluation and benchmarking purposes. Our results show that the proposed self-supervised method outperforms previous state-of-the-art methods in terms of reference metrics, visual quality, and subject user study. Code and dataset are available at url{https://github.com/VITA-Group/SSHarmonization}.
Low-light images captured in the real world are inevitably corrupted by sensor noise. Such noise is spatially variant and highly dependent on the underlying pixel intensity, deviating from the oversimplified assumptions in conventional denoising. Exi sting light enhancement methods either overlook the important impact of real-world noise during enhancement, or treat noise removal as a separate pre- or post-processing step. We present Coordinated Enhancement for Real-world Low-light Noisy Images (CERL), that seamlessly integrates light enhancement and noise suppression parts into a unified and physics-grounded optimization framework. For the real low-light noise removal part, we customize a self-supervised denoising model that can easily be adapted without referring to clean ground-truth images. For the light enhancement part, we also improve the design of a state-of-the-art backbone. The two parts are then joint formulated into one principled plug-and-play optimization. Our approach is compared against state-of-the-art low-light enhancement methods both qualitatively and quantitatively. Besides standard benchmarks, we further collect and test on a new realistic low-light mobile photography dataset (RLMP), whose mobile-captured photos display heavier realistic noise than those taken by high-quality cameras. CERL consistently produces the most visually pleasing and artifact-free results across all experiments. Our RLMP dataset and codes are available at: https://github.com/VITA-Group/CERL.
Due to the unprecedented breakthroughs brought about by deep learning, speech enhancement (SE) techniques have been developed rapidly and play an important role prior to acoustic modeling to mitigate noise effects on speech. To increase the perceptua l quality of speech, current state-of-the-art in the SE field adopts adversarial training by connecting an objective metric to the discriminator. However, there is no guarantee that optimizing the perceptual quality of speech will necessarily lead to improved automatic speech recognition (ASR) performance. In this study, we present TENET, a novel Time-reversal Enhancement NETwork, which leverages the transformation of an input noisy signal itself, i.e., the time-reversed version, in conjunction with the siamese network and complex dual-path transformer to promote SE performance for noise-robust ASR. Extensive experiments conducted on the Voicebank-DEMAND dataset show that TENET can achieve state-of-the-art results compared to a few top-of-the-line methods in terms of both SE and ASR evaluation metrics. To demonstrate the model generalization ability, we further evaluate TENET on the test set of scenarios contaminated with unseen noise, and the results also confirm the superiority of this promising method.
The self-attention-based model, transformer, is recently becoming the leading backbone in the field of computer vision. In spite of the impressive success made by transformers in a variety of vision tasks, it still suffers from heavy computation and intensive memory cost. To address this limitation, this paper presents an Interpretability-Aware REDundancy REDuction framework (IA-RED$^2$). We start by observing a large amount of redundant computation, mainly spent on uncorrelated input patches, and then introduce an interpretable module to dynamically and gracefully drop these redundant patches. This novel framework is then extended to a hierarchical structure, where uncorrelated tokens at different stages are gradually removed, resulting in a considerable shrinkage of computational cost. We include extensive experiments on both image and video tasks, where our method could deliver up to 1.4X speed-up for state-of-the-art models like DeiT and TimeSformer, by only sacrificing less than 0.7% accuracy. More importantly, contrary to other acceleration approaches, our method is inherently interpretable with substantial visual evidence, making vision transformer closer to a more human-understandable architecture while being lighter. We demonstrate that the interpretability that naturally emerged in our framework can outperform the raw attention learned by the original visual transformer, as well as those generated by off-the-shelf interpretation methods, with both qualitative and quantitative results. Project Page: http://people.csail.mit.edu/bpan/ia-red/.
We consider the problem of spatial signal design for multipath-assisted mmWave positioning under limited prior knowledge on the users location and clock bias. We propose an optimal robust design and a codebook-based heuristic design with optimized be am power allocation by exploiting the low-dimensional precoder structure under perfect prior knowledge. Through numerical results, we characterize different position-error-bound (PEB) regimes with respect to clock bias uncertainty and show that the proposed low-complexity codebook-based designs outperform the conventional directional beam codebook and achieve near-optimal PEB performance for both analog and digital architectures.
Majorana zero modes are expected to arise in semiconductor-superconductor hybrid systems, with potential topological quantum computing applications. One limitation of this approach is the need for a relatively high external magnetic field that should also change direction at nanoscale. This proposal considers devices that incorporate micromagnets to address this challenge. We perform numerical simulations of stray magnetic fields from different micromagnet configurations, which are then used to solve for Majorana wavefunctions. Several devices are proposed, starting with the basic four-magnet design to align magnetic field with the nanowire and scaling up to nanowire T-junctions. The feasibility of the approach is assessed by performing magnetic imaging of prototype patterns.
In recent years, great success has been witnessed in building problem-specific deep networks from unrolling iterative algorithms, for solving inverse problems and beyond. Unrolling is believed to incorporate the model-based prior with the learning ca pacity of deep learning. This paper revisits the role of unrolling as a design approach for deep networks: to what extent its resulting special architecture is superior, and can we find better? Using LISTA for sparse recovery as a representative example, we conduct the first thorough design space study for the unrolled models. Among all possible variations, we focus on extensively varying the connectivity patterns and neuron types, leading to a gigantic design space arising from LISTA. To efficiently explore this space and identify top performers, we leverage the emerging tool of neural architecture search (NAS). We carefully examine the searched top architectures in a number of settings, and are able to discover networks that are consistently better than LISTA. We further present more visualization and analysis to open the black box, and find that the searched top architectures demonstrate highly consistent and potentially transferable patterns. We hope our study to spark more reflections and explorations on how to better mingle model-based optimization prior and data-driven learning.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا