ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper provides a characterization of functions of bounded variation (BV) in a compact Riemannian manifold in terms of the short time behavior of the heat semigroup. In particular, the main result proves that the total variation of a function equ als the limit characterizing the space BV. The proof is carried out following two fully independent approaches, a probabilistic and an analytic one. Each method presents different advantages.
With a view towards Riemannian or sub-Riemannian manifolds, RCD metric spaces and specially fractals, this paper makes a step further in the development of a theory of heat semigroup based $(1,p)$ Sobolev spaces in the general framework of Dirichlet spaces. Under suitable assumptions that are verified in a variety of settings, the tools developed by D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste in the paper Sobolev inequalities in disguise allow us to obtain the whole family of Gagliardo-Nirenberg and Trudinger-Moser inequalities with optimal exponents. The latter depend not only on the Hausdorff and walk dimensions of the space but also on other invariants. In addition, we prove Morrey type inequalities and apply them to study the infimum of the exponents that ensure continuity of Sobolev functions. The results are illustrated for fractals using the Vicsek set, whereas several conjectures are made for nested fractals and the Sierpinski carpet.
We study $L^p$ Besov critical exponents and isoperimetric and Sobolev inequalities associated with fractional Laplacians on metric measure spaces. The main tool is the theory of heat semigroup based Besov classes in Dirichlet spaces that was introduced by the authors in previous works.
59 - Dominique Bakry 2008
It is known that the couple formed by the two dimensional Brownian motion and its Levy area leads to the heat kernel on the Heisenberg group, which is one of the simplest sub-Riemannian space. The associated diffusion operator is hypoelliptic but not elliptic, which makes difficult the derivation of functional inequalities for the heat kernel. However, Driver and Melcher and more recently H.-Q. Li have obtained useful gradient bounds for the heat kernel on the Heisenberg group. We provide in this paper simple proofs of these bounds, and explore their consequences in terms of functional inequalities, including Cheeger and Bobkov type isoperimetric inequalities for the heat kernel.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا