ترغب بنشر مسار تعليمي؟ اضغط هنا

We present high S/N spectroscopy of 15 emission-line galaxies (ELGs) cataloged in the KPNO International Spectroscopic Survey (KISS), selected for their possession of high equivalent width [O III] lines. The primary goal of this study was to attempt to derive direct-method ($T_e$) abundances for use in constraining the upper-metallicity branch of the $R_{23}$ relation. The spectra cover the full optical region from [O II]{lambda}{lambda}3726,3729 to [S III]{lambda}{lambda}9069,9531 and include the measurement of [O III]{lambda}4363 in 13 objects. From these spectra, we determine abundance ratios of helium, nitrogen, oxygen, neon, sulfur, and argon. We find these galaxies to predominantly possess oxygen abundances in the range of 8.0 $lesssim$ 12+log(O/H) $lesssim$ 8.3. We present a comparison of direct-method abundances with empirical SEL techniques, revealing several discrepancies. We also present a comparison of direct-method oxygen abundance calculations using electron temperatures determined from emission lines of O$^{++}$ and S$^{++}$, finding a small systematic shift to lower $T_e$ (~1184 K) and higher metallicity (~0.14 dex) for sulfur-derived $T_e$ compared to oxygen-derived $T_e$. Finally, we explore in some detail the different spectral activity types of targets in our sample, including regular star-forming galaxies, those with suspected AGN contamination, and a local pair of low-metallicity, high-luminosity compact objects.
Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z=0.1 to 1.55, the closest explosions allow more detail ed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z=0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M_g=-17.42+/-0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12+log(O/H)=7.5+/-0.1 dex as determined from the detection of the [OIII] 4363 Angs line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240-560 days after explosion to search for any sign of radioactive nickel-56, which might provide further insights on the explosion mechanism and the progenitors nature. We reach griz magnitudes of m_AB~26, but do not detect SN 2010gx at these epochs. The limit implies that any nickel-56 production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M_sun of nickel-56). The low volumetric rates of these supernovae (~10^-4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z_sun), high progenitor mass (>60 M_sun) and high rotation rate (fastest 10% of rotators).
We computed a comprehensive set of theoretical ultraviolet spectra of hot, massive stars with the radiation-hydrodynamics code WM-Basic. This model atmosphere and spectral synthesis code is optimized for computing the strong P Cygni-type lines origin ating in the winds of hot stars, which are the strongest features in the ultraviolet spectral region. The computed set is suitable as a spectral library for inclusion in evolutionary synthesis models of star clusters and star-forming galaxies. The chosen stellar parameters cover the upper left Hertzsprung-Russell diagram at L >~ 10^2.75 Lsun and T_eff >~ 20,000 K. The adopted elemental abundances are 0.05 Zsun, 0.2 Zsun, 0.4 Zsun, Zsun, and 2 Zsun. The spectra cover the wavelength range from 900 to 3000 {AA} and have a resolution of 0.4 {AA}. We compared the theoretical spectra to data of individual hot stars in the Galaxy and the Magellanic Clouds obtained with the International Ultraviolet Explorer (IUE) and Far Ultraviolet Spectroscopic Explorer (FUSE) satellites and found very good agreement. We built a library with the set of spectra and implemented it into the evolutionary synthesis code Starburst99 where it complements and extends the existing empirical library towards lower chemical abundances. Comparison of population synthesis models at solar and near-solar composition demonstrates consistency between synthetic spectra generated with either library. We discuss the potential of the new library for the interpretation of the rest-frame ultraviolet spectra of star-forming galaxies. Properties that can be addressed with the models include ages, initial mass function, and heavy-element abundance. The library can be obtained both individually or as part of the Starburst99 package.
142 - Fabio Bresolin 2009
We have obtained deep multi-object optical spectra of 49 HII regions in the outer disk of the spiral galaxy M83 (=NGC 5236) with the FORS2 spectrograph at the Very Large Telescope. The targets span the range in galactocentric distance between 0.64 an d 2.64 times the R25 isophotal radius (5.4-22.3 kpc), and 31 of them are located at R>R25, thus belonging to the extreme outer disk of the galaxy, populated by UV complexes revealed recently by the GALEX satellite. In order to derive the nebular chemical abundances, we apply several diagnostics of the oxygen abundance, including R23, [NII]/[OII] and the [OIII]4363 auroral line, which was detected in four HII regions. We find that, while inwards of the optical edge the O/H ratio follows the radial gradient known from previous investigations, the outer abundance trend flattens out to an approximately constant value. The latter varies, according to the adopted diagnostic, between 12+log(O/H)=8.2 and 12+log(O/H)=8.6 (i.e. from approximately 1/3 the solar oxygen abundance to nearly the solar value). An abrupt discontinuity in the radial oxygen abundance trend is also detected near the optical edge of the disk. These results are tentatively linked to the flat gas surface density in the outskirts of the galaxy, the relatively unevolved state of the extended disk of M83, and the redistribution of chemically enriched gas following a past galaxy encounter.
We present multi-object spectroscopy of young, massive stars in the Local Group galaxy IC 1613. We provide the spectral classification and a detailed spectral catalog for 54 OBA stars in this galaxy. The majority of the photometrically selected sampl e is composed of B- and A-type supergiants. The remaining stars include early O-type dwarfs and the only Wolf-Rayet star known in this galaxy. Among the early B stars we have serendipitously uncovered 6 Be stars, the largest spectroscopically confirmed sample of this class of objects beyond the Magellanic Clouds. We measure chemical abundances for 9 early-B supergiants, and find a mean oxygen abundance of 12+log(O/H)=7.90 +/- 0.08. This value is consistent with the result we obtain for two HII regions in which we detect the temperature-sensitive [OIII]4363 auroral line.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا