ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the problem of clock synchronization in highly dynamic networks, where communication links can appear or disappear at any time. The nodes in the network are equipped with hardware clocks, but the rate of the hardware clocks can vary arbitrar ily within specific bounds, and the estimates that nodes can obtain about the clock values of other nodes are inherently inaccurate. Our goal in this setting is to output a logical clock at each node such that the logical clocks of any two nodes are not too far apart, and nodes that remain close to each other in the network for a long time are better synchronized than distant nodes. This property is called gradient clock synchronization. Gradient clock synchronization has been widely studied in the static setting, where the network topology does not change. We show that the asymptotically optimal bounds obtained for the static case also apply to our highly dynamic setting: if two nodes remain at distance $d$ from each other for sufficiently long, it is possible to upper bound the difference between their clock values by $O(d log (D / d))$, where $D$ is the diameter of the network. This is known to be optimal even for static networks. Furthermore, we show that our algorithm has optimal stabilization time: when a path of length $d$ appears between two nodes, the time required until the clock skew between the two nodes is reduced to $O(d log (D / d))$ is $O(D)$, which we prove to be optimal. Finally, the techniques employed for the more intricate analysis of the algorithm for dynamic graphs provide additional insights that are also of interest for the static setting. In particular, we establish self-stabilization of the gradient property within $O(D)$ time.
128 - Fabian Kuhn , Rotem Oshman 2009
In this paper we suggest a method by which reference broadcast synchronization (RBS), and other methods of estimating clock values, can be incorporated in standard clock synchronization algorithms to improve synchronization quality. We advocate a log ical separation of the task of estimating the clock values of other nodes in the network from the task of using these estimates to output a logical clock value. The separation is achieved by means of a virtual estimate graph, overlaid on top of the real network graph, which represents the information various nodes can obtain about each other. RBS estimates are represented in the estimate graph as edges between nodes at distance 2 from each other in the original network graph. A clock synchronization algorithm then operates on the estimate graph as though it were the original network. To illustrate the merits of this approach, we modify a recent optimal gradient clock synchronization algorithm to work in this setting. The modified algorithm transparently takes advantage of RBS estimates and any other means by which nodes can estimate each others clock values.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا