ترغب بنشر مسار تعليمي؟ اضغط هنا

Background: Biological data often originate from samples containing mixtures of subpopulations, corresponding e.g. to distinct cellular phenotypes. However, identification of distinct subpopulations may be difficult if biological measurements yield d istributions that are not easily separable. Results: We present Multiresolution Correlation Analysis (MCA), a method for visually identifying subpopulations based on the local pairwise correlation between covariates, without needing to define an a priori interaction scale. We demonstrate that MCA facilitates the identification of differentially regulated subpopulations in simulated data from a small gene regulatory network, followed by application to previously published single-cell qPCR data from mouse embryonic stem cells. We show that MCA recovers previously identified subpopulations, provides additional insight into the underlying correlation structure, reveals potentially spurious compartmentalizations, and provides insight into novel subpopulations. Conclusions: MCA is a useful method for the identification of subpopulations in low-dimensional expression data, as emerging from qPCR or FACS measurements. With MCA it is possible to investigate the robustness of covariate correlations with respect subpopulations, graphically identify outliers, and identify factors contributing to differential regulation between pairs of covariates. MCA thus provides a framework for investigation of expression correlations for genes of interests and biological hypothesis generation.
A toggle switch consists of two genes that mutually repress each other. This regulatory motif is active during cell differentiation and is thought to act as a memory device, being able to choose and maintain cell fate decisions. In this contribution, we study the stability and dynamics of a two-stage gene expression switch within a probabilistic framework inspired by the properties of the Pu/Gata toggle switch in myeloid progenitor cells. We focus on low mRNA numbers, high protein abundance and monomeric transcription factor binding. Contrary to the expectation from a deterministic description, this switch shows complex multi-attractor dy- namics without autoactivation and cooperativity. Most importantly, the four attractors of the system, which only emerge in a probabilistic two-stage description, can be identified with committed and primed states in cell differentiation. We first study the dynamics of the system and infer the mechanisms that move the system between attractors using both the quasi-potential and the probability flux of the system. Second, we show that the residence times of the system in one of the committed attractors are geometrically distributed and provide an analytical expression of the distribution. Most importantly we find that the mean residence time increases linearly with the mean protein level. Finally, we study the implications of this distribution for the stability of a switch and discuss the influence of the stability on a specific cell differentiation mechanism. Our model explains lineage priming and proposes the need of either high protein numbers or long term modifications such as chromatin remodeling to achieve stable cell fate decisions. Notably we present a system with high protein abundance that nevertheless requires a probabilistic description to exhibit multistability, complex switching dynamics and lineage priming.
The set of regulatory interactions between genes, mediated by transcription factors, forms a species transcriptional regulatory network (TRN). By comparing this network with measured gene expression data one can identify functional properties of the TRN and gain general insight into transcriptional control. We define the subnet of a node as the subgraph consisting of all nodes topologically downstream of the node, including itself. Using a large set of microarray expression data of the bacterium Escherichia coli, we find that the gene expression in different subnets exhibits a structured pattern in response to environmental changes and genotypic mutation. Subnets with less changes in their expression pattern have a higher fraction of feed-forward loop motifs and a lower fraction of small RNA targets within them. Our study implies that the TRN consists of several scales of regulatory organization: 1) subnets with more varying gene expression controlled by both transcription factors and post-transcriptional RNA regulation, and 2) subnets with less varying gene expression having more feed-forward loops and less post-transcriptional RNA regulation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا