ترغب بنشر مسار تعليمي؟ اضغط هنا

In this article we extend the currently established diffusion theory of spin-dependent electrical conduction by including spin-dependent thermoelectricity and thermal transport. Using this theory, we propose new experiments aimed at demonstrating nov el effects such as the spin-Peltier effect, the reciprocal of the recently demonstrated thermally driven spin injection, as well as the magnetic heat valve. We use finite-element methods to model specific devices in literature to demonstrate our theory. Spin-orbit effects such as anomalous-Hall, -Nernst, anisotropic magnetoresistance and spin-Hall are also included in this model.
We measured the anomalous-Nernst effect and anisotropic magnetoresistive heating in a lateral multiterminal Permalloy/Copper spin valve using all-electrical lock-in measurements. To interpret the results, a three-dimensional thermoelectric finite-ele ment-model is developed. Using this model, we extract the heat profile which we use to determine the anomalous Nernst coefficient of Permalloy Rn=0.13 and also determine the maximum angle of theta=8 degrees of the magnetization prior to the switching process when an opposing non-collinear 10$^{circ}$ magnetic field is applied.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا