ترغب بنشر مسار تعليمي؟ اضغط هنا

For more than 15 years, since the days of the Energetic Gamma-Ray Experiment Telescope (EGRET) on board the Compton Gamma-Ray Observatory (CGRO; 1991-2000), it has remained an open question why the prominent blazar 3C 345 was not reliably detected at gamma-ray energies <=20 MeV. Recently a bright gamma-ray source (0FGL J1641.4+3939/1FGL J1642.5+3947), potentially associated with 3C 345, was detected by the Large Area Telescope (LAT) on Fermi. Multiwavelength observations from radio bands to X-rays (mainly GASP-WEBT and Swift) of possible counterparts (3C 345, NRAO 512, B3 1640+396) were combined with 20 months of Fermi-LAT monitoring data (August 2008 - April 2010) to associate and identify the dominating gamma-ray emitting counterpart of 1FGL J1642.5+3947. The source 3C 345 is identified as the main contributor for this gamma-ray emitting region. However, after November 2009 (15 months), a significant excess of photons from the nearby quasar NRAO 512 started to contribute and thereafter was detected with increasing gamma-ray activity, possibly adding flux to 1FGL J1642.5+3947. For the same time period and during the summer of 2010, an increase of radio, optical and X-ray activity of NRAO 512 was observed. No gamma-ray emission from B3 1640+396 was detected.
SN 2001em is a peculiar supernova, originally classified as Type Ib/c. About two years after the SN it was detected in the radio, showing a rising radio flux with an optically thin spectral slope, and it also displayed a large X-ray luminosity (~10^{ 41} erg/s). Thus it was suspected to harbor a decelerating (by then, mildly) relativistic jet pointing away from us. About 3 years after its discovery the optical spectrum of SN 2001em showed a broad H-alpha line, and it was therefore reclassified as Type IIn. Here we constrain its proper motion and expansion velocity by analyzing four epochs of VLBI observations, extending out to 5.4 years after the SN. The supernova is still unresolved 5.4 years after the explosion. For the proper motion we obtain (23,000 +/- 30,000) km/s while our 2-sigma upper limit on the expansion velocity is 6000 km/s. These limits are somewhat tighter than those derived by Bietenholz & Bartel, and confirm their conclusion that late time emission from SN 2001em, a few years after the explosion, is not driven by a relativistic jet. VLA observations of the radio flux density, at 8.46 GHz, show a decay as t^{-1.23 +/- 0.40} starting ~2.7 years after the SN. Collectively, the observations suggest interaction of the SN ejecta with a very dense circumstellar medium, though the implied opacity constraints still present a challenge.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا