ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the feasibility of detecting 21cm absorption features in the afterglow spectra of high redshift long Gamma Ray Bursts (GRBs). This is done employing simulations of cosmic reionization, together with the instrumental characteristics of the LOw Frequency ARray (LOFAR). We find that absorption features could be marginally (with a S/N larger than a few) detected by LOFAR at z>7 if the GRB originated from PopIII stars, while the detection would be easier if the noise were reduced by one order of magnitude, i.e. similar to what is expected for the first phase of the Square Kilometer Array (SKA1-low). On the other hand, more standard GRBs are too dim to be detected even with ten times the sensitivity of SKA1-low, and only in the most optimistic case can a S/N larger than a few be reached at z>9.
60 - L. Wolz , F.B. Abdalla , C. Blake 2013
We model a 21 cm intensity mapping survey in the redshift range 0.01<z<1.5 designed to simulate the skies as seen by future radio telescopes such as the Square Kilometre Array (SKA), including instrumental noise and Galactic foregrounds. In our pipel ine, we remove the introduced Galactic foregrounds with a fast independent component analysis (fastica) technique. We present the power spectrum of the large-scale matter distribution, C(l), before and after the application of this foreground removal method and calculate the resulting systematic errors. We attempt to reduce systematics in the foreground subtraction by optimally masking the maps to remove high foregrounds in the Galactic plane. Our simulations show a certain level of bias remains in the power spectrum at all scales l<400. At large-scales l<30 this bias is particularly significant. We measure the impact of these systematic effects in two different ways: firstly we fit cosmological parameters to the broadband shape of the power spectrum and secondly we extract the position of the Baryon Acoustic Oscillations (BAO). In the first analysis, we find that the systematics introduce an significant shift in the best fit cosmological parameters at the 2 to 3 sigma level which depends on the masking and noise levels. However, cosmic distances can be recovered in an unbiased way after foreground removal at all simulated redshifts by fitting the BAOs in the power spectrum. We conclude that further advances in foreground removal are needed in order to recover unbiased information from the broadband shape of the power spectrum, however, intensity mapping experiments will be a powerful tool for mapping cosmic distances across a wide redshift range.
We present a catalogue of galaxy groups and clusters selected using a friends-of-friends algorithm with a dynamic linking length from the 2dF-SDSS and QSO (2SLAQ) luminous red galaxy survey. The linking parameters for the code are chosen through an a nalysis of simulated 2SLAQ haloes. The resulting catalogue includes 313 clusters containing 1,152 galaxies. The galaxy groups and clusters have an average velocity dispersion of sigma_v = 467.97 km/s and an average size of R_clt = 0.78 Mpc/h. Galaxies from regions of one square degree and centred on the galaxy clusters were downloaded from the Sloan Digital Sky Survey Data Release 6 (SDSS DR6). Investigating the photometric redshifts and cluster red-sequence of these galaxies shows that the galaxy clusters detected with the FoF algorithm are reliable out to z~0.6. We estimate masses for the clusters using their velocity dispersions. These mass estimates are shown to be consistent with 2SLAQ mock halo masses. Further analysis of the simulation haloes shows that clipping out low richness groups with large radii improves the purity of catalogue from 52% to 88%, while retaining a completeness of 94%. Finally, we test the two-point correlation function of our cluster catalogue. We find a best-fitting power law model with parameters r0 = 24pm4 Mpc/h and gamma = -2.1pm 0.2, which are in agreement with other low redshift cluster samples and consistent with a {Lambda}CDM universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا