ترغب بنشر مسار تعليمي؟ اضغط هنا

199 - C.-L. Zou , F.-W. Sun , Y.-F. Xiao 2010
Plasmon mode in a silver nanowire is theoretically studied when the nanowire is placed on or near a silica substrate. It is found that the substrate has much influence on the plasmon mode. For the nanowire on the substrate, the plasmon (hybrid) mode possesses not only a long propagation length but also an ultrasmall mode area. From the experimental point of view, this cavity-free structure holds a great potential to study a strong coherent interaction between the plasmon mode and single quantum system (for example, quantum dots) embedded in the substrate.
107 - F. W. Sun , C. W. Wong 2009
The indistinguishability of independent single photons is presented by decomposing the single photon pulse into the mixed state of different transform limited pulses. The entanglement between single photons and outer environment or other photons indu ces the distribution of the center frequencies of those transform limited pulses and makes photons distinguishable. Only the single photons with the same transform limited form are indistinguishable. In details, the indistinguishability of single photons from the solid-state quantum emitter and spontaneous parametric down conversion is examined with two-photon Hong-Ou-Mandel interferometer. Moreover, experimental methods to enhance the indistinguishability are discussed, where the usage of spectral filter is highlighted.
In this paper, photonic entanglement and interference are described and analyzed with the language of quantum information process. Correspondingly, a photon state involving several degrees of freedom is represented in a new expression based on the pe rmutation symmetry of bosons. In this expression, each degree of freedom of a single photon is regarded as a qubit and operations on photons as qubit gates. The two-photon Hong-Ou-Mandel interference is well interpreted with it. Moreover, the analysis reveals the entanglement between different degrees of freedom in a four-photon state from parametric down conversion, even if there is no entanglement between them in the two-photon state. The entanglement will decrease the state purity and photon interference visibility in the experiments on a four-photon polarization state.
165 - F. W. Sun , J. M. Cai , J. S. Xu 2007
We construct a linear optics measurement process to determine the entanglement measure, named emph{I-concurrence}, of a set of $4 times 4$ dimensional two-photon entangled pure states produced in the optical parametric down conversion process. In our experiment, an emph{equivalent} symmetric projection for the two-fold copy of single subsystem (presented by L. Aolita and F. Mintert, Phys. Rev. Lett. textbf{97}, 050501 (2006)) can be realized by observing the one-side two-photon coincidence without any triggering detection on the other subsystem. Here, for the first time, we realize the measurement for entanglement contained in bi-photon pure states by taking advantage of the indistinguishability and the bunching effect of photons. Our method can determine the emph{I-concurrence} of generic high dimensional bipartite pure states produced in parametric down conversion process.
We propose and demonstrate experimentally a projection scheme to measure the quantum phase with a precision beating the standard quantum limit. The initial input state is a twin Fock state $|N,N>$ proposed by Holland and Burnett [Phys. Rev. Lett. {bf 71}, 1355 (1993)] but the phase information is extracted by a quantum state projection measurement. The phase precision is about $1.4/N$ for large photon number $N$, which approaches the Heisenberg limit of 1/N. Experimentally, we employ a four-photon state from type-II parametric down-conversion and achieve a phase uncertainty of $0.291pm 0.001$ beating the standard quantum limit of $1/sqrt{N} = 1/2$ for four photons.
99 - Z. Y. Ou , B. H. Liu , F. W. Sun 2007
By using an asymmetric beam splitter, we observe the generalized Hong-Ou-Mandel effects for three and four photons, respectively. Furthermore, we can use this generalized Hong-Ou-Mandel interferometer to characterize temporal distinguishability.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا