ترغب بنشر مسار تعليمي؟ اضغط هنا

High-temperature superconductors exhibit a wide variety of novel excitations. If contacted with a topological insulator, the lifting of spin rotation symmetry in the surface states can lead to the emergence of unconventional superconductivity and nov el particles. In pursuit of this possibility, we fabricated high critical-temperature (Tc ~ 85 K) superconductor/topological insulator (Bi2Sr2CaCu2O8+delta/Bi2Te2Se) junctions. Below 75 K, a zero-bias conductance peak (ZBCP) emerges in the differential conductance spectra of this junction. The magnitude of the ZBCP is suppressed at the same rate for magnetic fields applied parallel or perpendicular to the junction. Furthermore, it can still be observed and does not split up to at least 8.5 T. The temperature and magnetic field dependence of the excitation we observe appears to fall outside the known paradigms for a ZBCP.
268 - F. Zhao , A. Balocchi , A. Kunold 2009
By combining optical spin injection techniques with transport spectroscopy tools, we demonstrate a spin-photodetector allowing for the electrical measurement and active filtering of conduction band electron spin at room temperature in a non-magnetic GaAsN semiconductor structure. By switching the polarization of the incident light from linear to circular, we observe a Giant Spin-dependent Photoconductivity (GSP) reaching up to 40 % without the need of an external magnetic field. We show that the GSP is due to a very efficient spin filtering effect of conduction band electrons on Nitrogen-induced Ga self-interstitial deep paramagnetic centers.
271 - H. W. Ou , J. F. Zhao , Y. Zhang 2008
The misfit oxide, Bi$_{2}$Ba$_{1.3}$K$_{0.6}$Co$_{2.1}$O$_{y}$, made of alternating rocksalt-structured [BiO/BaO] layers and hexagonal CoO$_{2}$ layers, was studied by angle-resolved photoemission spectroscopy. Detailed electronic structure of such a highly strained oxide interfaces is revealed for the first time. We found that under the two incommensurate crystal fields, electrons are confined within individual sides of the interface, and scattered by umklapp scattering of the crystal field from the other side. In addition, the high strain on the rocksalt layer raises its chemical potential and induces large charge transfer to the CoO$_{2}$ layer. Furthermore, a novel interface effects, the interfacial enhancement of electron-phonon interactions, is discovered. Our findings of these electronic properties lay a foundation for designing future functional oxide interfaces.
278 - H. W. Ou , Y. Zhang , J. F. Zhao 2008
We investigated the temperature dependence of the density-of-states in the iron-based superconductor SmO_1-xF_xFeAs (x=0, 0.12, 0.15, 0.2) with high resolution angle-integrated photoemission spectroscopy. The density-of-states suppression is observed with decreasing temperature in all samples, revealing two characteristic energy scales (10meV and 80meV). However, no obvious doping dependence is observed. We argue that the 10meV suppression is due to an anomalously doping-independent normal state pseudogap, which becomes the superconducting gap once in the superconducting state; and alert the possibility that the 80meV-scale suppression might be an artifact of the polycrystalline samples.
125 - H. W. Ou , J. F. Zhao , Y. Zhang 2008
The electronic structure of the new superconductor, SmO$_{1-x}$F$_x$FeAs ($x=0.15$), has been studied by angle-integrated photoemission spectroscopy. Our data show a sharp feature very close to the Fermi energy, and a relative flat distribution of th e density of states between 0.5 eV and 3 eV binding energy, which agrees best with band structure calculations considering an antiferromagnetic ground state. No noticeable gap opening was observed at 12 Kelvin below the superconducting transition temperature, indicating the existence of large ungapped regions in the Brillouin zone.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا