ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of muon-spin relaxation measurements of spin excitations in the one-dimensional quantum Heisenberg antiferromagnet Cu(pyz)(NO$_{3}$)$_{2}$. Using density-functional theory we propose muon sites and assess the degree of perturba tion the muon probe causes on the system. We identify a site involving the muon forming a hydroxyl-type bond with an oxygen on the nitrate group that is sensitive to the characteristic spin dynamics of the system. Our measurements of the spin dynamics show that in the temperature range $T_{mathrm{N}}<T<J$ (between the ordering temperature $T_{mathrm{N}}$ and the exchange energy scale $J$) the field-dependent muon spin relaxation is characteristic of diffusive transport of spin excitations over a wide range of applied fields. We also identify a possible crossover at higher applied fields in the muon probes response to the fluctuation spectrum, to a regime where the muon detects early-time transport with a ballistic character. This behavior is contrasted with that found for $T>J$ and that in the related two-dimensional system Cu(pyz)$_2$(ClO$_4$)$_{2}$.
We present the results of muon-spin relaxation measurements on the triangular lattice Heisenberg antiferromagnet $alpha$-KCrO$_{2}$. We observe sharp changes in behaviour at an ordering temperature of $T_{mathrm{c}}=23$ K, with an additional broad fe ature in the muon-spin relaxation rate evident at T=13 K, both of which correspond to features in the magnetic contribution to the heat capacity. This behaviour is distinct from both the Li- and Na- containing members of the series. These data may be qualitatively described with the established theoretical predictions for the underlying spin system.
197 - C.-L. Zou , F.-W. Sun , Y.-F. Xiao 2010
Plasmon mode in a silver nanowire is theoretically studied when the nanowire is placed on or near a silica substrate. It is found that the substrate has much influence on the plasmon mode. For the nanowire on the substrate, the plasmon (hybrid) mode possesses not only a long propagation length but also an ultrasmall mode area. From the experimental point of view, this cavity-free structure holds a great potential to study a strong coherent interaction between the plasmon mode and single quantum system (for example, quantum dots) embedded in the substrate.
Single air-suspended carbon nanotubes (length 2 - 5 microns) exhibit high optical quantum efficiency (7 - 20%) for resonant pumping at low intensities. Under ultrafast excitation, the photoluminescence dramatically saturates for very low injected exc iton numbers (2 to 6 excitons per pulse per SWCNT). This PL clamping is attributed to highly efficient exciton-exciton annihilation over micron length scales. Stochastic modeling of exciton dynamics and femtosecond excitation correlation spectroscopy allow determination of nanotube absorption (2 - 6%) and exciton lifetime (85 +- 20 ps).
The magnetic properties of a new family of molecular-based quasi-two dimension $S=1/2$ Heisenberg antiferromagnets are reported. Three compounds, ($Cu(pz)_2(ClO_4)_2$, $Cu(pz)_2(BF_4)_2$, and $[Cu(pz)_2(NO_3)](PF_6)$) contain similar planes of Cu$^{2 +}$ ions linked into magnetically square lattices by bridging pyrazine molecules (pz = $C_4H_4N_2$). The anions provide charge balance as well as isolation between the layers. Single crystal measurements of susceptibility and magnetization, as well as muon spin relaxation studies, reveal low ratios of N{e}el temperatures to exchange strengths ($4.25 / 17.5 = 0.243$, $3.80/15.3=0.248$, and $3.05/10.8=0.282$, respectively) while the ratio of the anisotropy fields $H_A$ (kOe) to the saturation field $H_mathrm{SAT}$ (kOe) are small ($2.6/490 = 5.3times10^{-3}$, $2.4/430=5.5times10^{-3}$, and $0.07/300=2.3times10^{-4}$, respectively), demonstrating close approximations to a 2D Heisenberg model. The susceptibilities of ClO$_4$ and BF$_4$ show evidence of an exchange anisotropy crossover (Heisenberg to $XY$) at low temperatures; their ordering transitions are primarily driven by the $XY$ behavior with the ultimate 3D transition appearing parasitically. The PF$_6$ compound remains Heisenberg-like at all temperatures, with its transition to the N{e}el state due to the interlayer interactions. Effects of field-induced anisotropy have been observed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا