ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - F. Winterberg 2009
Different ways to achieve the stabilization of a linear z-pinch by a superimposed shear flow are analyzed. They are: 1) Axial shear flow proposed by Arber and Howell with the pinch discharge in its center, and experimentally tested by Shumlak et al. 2) Spiral flow of a dense low temperature plasma surrounding a dense pinch discharge. 3) A thin metallic projectile shot at a high velocity through the center of the pinch discharge. 4) The replacement of the high velocity projectile by the shape charge effect jet in a conical implosion. 5) The replacement of the jet by a stationary wire inside the conical implosion.
97 - F. Winterberg 2008
Recent progress towards the non-fission ignition of thermonuclear micro-explosions raises the prospect for a revival of the nuclear bomb propulsion idea, both for the fast transport of large payloads within the solar system and the launch into earth orbit without the release of fission products into the atmosphere. To reach this goal three areas of research are of importance: 1)Compact thermonuclear ignition drivers. 2)Fast ignition and deuterium burn. 3)Space-craft architecture involving magnetic insulation and GeV electrostatic potentials
120 - F. Winterberg 2008
The proposed fast ignition of highly compressed deuterium-tritium (DT) targets by petawatt lasers requires energy of about 100kJ. To lower the power of the laser, it is proposed to accomplish fast ignition with two lasers, one with lower power in the infrared, and a second one with high power in the visible to ultraviolet region. The infrared laser of lower power shall by its radiation pressure drive a large current in a less than solid density plasma placed inside a capillary, while the second high power-shorter wave length-laser shall ignite at one end of the capillary a magnetic field supported thermonuclear detonation wave in a blanket made from solid DT along the outer surface of the capillary. The other end of the capillary, together with its DT blanket, is stuck in the DT target, where following the compression of the target the detonation wave ignites the target.
41 - F. Winterberg 2008
If matter is suddenly put under a high pressure, for example a pressure of 100 Mb =10^14 dyn/cm^2, it can undergo a transformation into molecular excited states, bound by inner electron shells, with keV potential well for the electrons. If this happe ns, the electrons can under the emission of X-rays go into the groundstate of the molecule formed under the high pressure. At a pressure of the order ~ 10^14 dyn/cm^2, these molecules store in their excited states an energy with an energy density of the order ~ 10^14 erg/cm^3, about thousand times larger than for combustible chemicals under normal pressures. Furthermore, with the much larger optical path length of keV photons compared to the path length of eV photons, these superexplosives can reach at their surface an energy flux density (c=3x10^10 cm/s) of the order (c/3)x10^14 = 10^24 erg/cm^2s^(-1) = 10^17 W/cm^2, large enough for the ignition of thermonuclear reactions.
38 - F. Winterberg 2008
As in an acoustic black hole where the fluid is moving faster than the speed of sound and where the sound waves are swept along, in an Alfven black hole the plasma is moving faster than the Alfven velocity, with the Alfven waves swept along and elimi nated as the cause of the magneto hydrodynamic instabilities. To realize an Alfven black hole, it is proposed to bring a plasma into rapid rotation by radially arranged lumped parameter transmission lines intersecting the plasma under an oblique angle. The rotating plasma slides frictionless over magnetic mirror fields directed towards the rotating plasma, with the mirror fields generated by magnetic solenoids positioned at the end of each transmission line. It is then shown that, with this configuration one can realize a thermonuclear dynamo, which also can serve as the analogue of a magnetar.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا