ترغب بنشر مسار تعليمي؟ اضغط هنا

We study fluctuations of the conductance of micron-sized graphene devices as a function of the Fermi energy and magnetic field. The fluctuations are studied in combination with analysis of weak localization which is determined by the same scattering mechanisms. It is shown that the variance of conductance fluctuations depends not only on inelastic scattering that controls dephasing but also on elastic scattering. In particular, contrary to its effect on weak localization, strong intervalley scattering suppresses conductance fluctuations in graphene. The correlation energy, however, is independent of the details of elastic scattering and can be used to determine the electron temperature of graphene structures.
We propose a method of measuring the electron temperature $T_e$ in mesoscopic conductors and demonstrate experimentally its applicability to micron-size graphene devices in the linear-response regime ($T_eapprox T$, the bath temperature). The method can be {especially useful} in case of overheating, $T_e>T$. It is based on analysis of the correlation function of mesoscopic conductance fluctuations. Although the fluctuation amplitude strongly depends on the details of electron scattering in graphene, we show that $T_e$ extracted from the correlation function is insensitive to these details.
We show that the manifestation of quantum interference in graphene is very different from that in conventional two-dimensional systems. Due to the chiral nature of charge carriers, it is sensitive not only to inelastic, phase-breaking scattering, but also to a number of elastic scattering processes. We study weak localization in different samples and at different carrier densities, including the Dirac region, and find the characteristic rates that determine it. We show how the shape and quality of graphene flakes affect the values of the elastic and inelastic rates and discuss their physical origin.
We report the first experimental study of the quantum interference correction to the conductivity of bilayer graphene. Low-field, positive magnetoconductivity due to the weak localisation effect is investigated at different carrier densities, includi ng those around the electroneutrality region. Unlike conventional 2D systems, weak localisation in bilayer graphene is affected by elastic scattering processes such as intervalley scattering. Analysis of the dephasing determined from the magnetoconductivity is complemented by a study of the field- and density-dependent fluctuations of the conductance. Good agreement in the value of the coherence length is found between these two studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا