ترغب بنشر مسار تعليمي؟ اضغط هنا

The treatment of the inelastic collisions with electrons and hydrogen atoms are the main source of uncertainties in non-Local Thermodynamic Equilibrium (LTE) spectral line computations. We report, in this research note, quantum mechanical data for 36 9 collisional transitions of ion{Mg}{I} with electrons for temperatures comprised between 500 and 20000~K. We give the quantum mechanical data in terms of effective collision strengths, more practical for non-LTE studies.
We determined the fundamental properties of HD 140283 by obtaining new interferometric and spectroscopic measurements and combining them with photometry from the literature. The interferometric measurements were obtained using the visible interferome ter VEGA on the CHARA array and we determined a 1D limb-darkened angular diameter of 0.353 +/- 0.013 milliarcseconds. Using photometry from the literature we derived the bolometric flux with two solutions: a zero-reddening one of Fbol = 3.890 +/- 0.066 1E-8 erg/s/cm2 and a solution with a maximum of Av = 0.1 mag, Fbol= 4.220 +/- 0.067 1E-8 erg/s/cm2. The interferometric Teff is thus 5534 +/- 103 K or 5647 +/- 105 K and its radius is R = 2.21 +/- 0.08 Rsol. Spectroscopic measurements of HD140283 were obtained using HARPS, NARVAL, and UVES and a 1D LTE analysis of H-alpha line wings yields Teff(Halpha) = 5626 +/- 75 K. Using fine-tuned stellar models including diffusion of elements we then determined the mass M and age t of HD140283. Once the metallicity has been fixed, the age of the star depends on M, initial helium abundance Yi and mixing-length parameter alpha, only two of which are independent. We need to adjust alpha to much lower values than the solar one (~2) in order to fit the observations, and if Av = 0.0 mag then 0.5 < alpha < 1. We give an equation to estimate t from M, Yi (alpha) and Av. Establishing a reference alpha = 1.00 and adopting Yi = 0.245 we derive a mass and age of HD140283: M = 0.780 +/- 0.010 Msol and t = 13.7 +/- 0.7 Gyr (Av = 0.0) or M = 0.805 +/- 0.010 Msol and t = 12.2 +/- 0.6 Gyr (Av=0.1 mag). Our stellar models yield an initial metallicity of [Z/X]i = -1.70 and logg = 3.65 +/- 0.03. Asteroseismic observations are critical for overcoming limitations in our results.
Asteroseismic data can be used to determine surface gravities with precisions of < 0.05 dex by using the global seismic quantities Deltanu and nu_max along with Teff and [Fe/H]. Surface gravity is also one of the four stellar properties to be derived by automatic analyses for 1 billion stars from Gaia data (workpackage GSP_Phot). We explore seismic data from MS F, G, K stars (solar-like stars) observed by Kepler as a potential calibration source for methods that Gaia will use for object characterisation (log g). We calculate log g for bright nearby stars for which radii and masses are known, and using their global seismic quantities in a grid-based method, we determine an asteroseismic log g to within 0.01 dex of the direct calculation, thus validating the accuracy of our method. We find that errors in Teff and mainly [Fe/H] can cause systematic errors of 0.02 dex. We then apply our method to a list of 40 stars to deliver precise values of surface gravity, i.e. sigma < 0.02 dex, and we find agreement with recent literature values. Finally, we explore the precision we expect in a sample of 400+ Kepler stars which have their global seismic quantities measured. We find a mean uncertainty (precision) on the order of <0.02 dex in log g over the full explored range 3.8 < log g < 4.6, with the mean value varying only with stellar magnitude (0.01 - 0.02 dex). We study sources of systematic errors in log g and find possible biases on the order of 0.04 dex, independent of log g and magnitude, which accounts for errors in the Teff and [Fe/H] measurements, as well as from using a different grid-based method. We conclude that Kepler stars provide a wealth of reliable information that can help to calibrate methods that Gaia will use, in particular, for source characterisation with GSP_Phot where excellent precision (small uncertainties) and accuracy in log g is obtained from seismic data.
Distances from the Gaia mission will no doubt improve our understanding of stellar physics by providing an excellent constraint on the luminosity of the star. However, it is also clear that high precision stellar properties from, for example, asteros eismology, will also provide a needed input constraint in order to calibrate the methods that Gaia will use, e.g. stellar models or GSP_phot. For solar-like stars (F, G, K IV/V), asteroseismic data delivers at the least two very important quantities: (1) the average large frequency separation <Delta_nu> and (2) the frequency corresponding to the maximum of the modulated-amplitude spectrum nu_max. Both of these quantities are related directly to stellar parameters (radius and mass) and in particular their combination (gravity and density). We show how the precision in <Delta_nu>, nu_max, and atmospheric parameters T_eff and [Fe/H] affect the determination of gravity (log g) for a sample of well-known stars. We find that log g can be determined within less than 0.02 dex accuracy for our sample while considering precisions in the data expected for V<12 stars from Kepler data. We also derive masses and radii which are accurate to within 1sigma of the accepted values. This study validates the subsequent use of all of the available asteroseismic data on main sequence solar-like stars from the Kepler field (>500 IV/V stars) in order to provide a very important constraint for Gaia calibration of GSP_phot through the use of log g. We note that while we concentrate on IV/V stars, both the CoRoT and Kepler fields contain asteroseismic data on thousands of giant stars which will also provide useful calibration measures.
We have performed accurate iron abundance measurements for 44 red giants (RGs) in the Carina dwarf spheroidal (dSph) galaxy. We used archival, high-resolution spectra (R~38,000) collected with UVES at ESO/VLT either in slit mode (5) or in fiber mode (39, FLAMES/GIRAFFE-UVES). The sample is more than a factor of four larger than any previous spectroscopic investigation of stars in dSphs based on high-resolution (R>38,000) spectra. We did not impose the ionization equilibrium between neutral and singly-ionized iron lines. The effective temperatures and the surface gravities were estimated by fitting stellar isochrones in the V, B-V color-magnitude diagram. To measure the iron abundance of individual lines we applied the LTE spectrum synthesis fitting method using MARCS model atmospheres of appropriate metallicity. We found evidence of NLTE effects between neutral and singly-ionized iron abundances. Assuming that the FeII abundances are minimally affected by NLTE effects, we corrected the FeI stellar abundances using a linear fit between FeI and FeII stellar abundance determinations. We found that the Carina metallicity distribution based on the corrected FeI abundances (44 RGs) has a weighted mean metallicity of [Fe/H]=-1.80 and a weighted standard deviation of sigma=0.24 dex. The Carina metallicity distribution based on the FeII abundances (27 RGs) gives similar estimates ([Fe/H]=-1.72, sigma=0.24 dex). The current weighted mean metallicities are slightly more metal poor when compared with similar estimates available in the literature. Furthermore, if we restrict our analysis to stars with the most accurate iron abundances, ~20 FeI and at least three FeII measurements (15 stars), we found that the range in iron abundances covered by Carina RGs (~1 dex) agrees quite well with similar estimates based on high-resolution spectra.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا