ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the cosmological constants derived from WMAP, the standard big bang nucleosynthesis (SBBN) predicts the light elements primordial abundances for 4He, 3He, D, 6Li and 7Li. These predictions are in satisfactory agreement with the observations, ex cept for lithium which displays in old warm dwarfs an abundance depleted by a factor of about 3. Depletions of this fragile element may be produced by several physical processes, in different stellar evolutionary phases, they will be briefly reviewed here, none of them seeming yet to reproduce the observed depletion pattern in a fully convincing way.
88 - Monique Spite 2012
(Abridged) Extremely metal-poor stars contain the fossil records of the chemical composition of the early Galaxy. The NLTE profiles of the calcium lines were computed in a sample of 53 extremely metal-poor stars with a modified version of the program MULTI. With our new model atom we are able to reconcile the abundance of Ca deduced from the Ca I and Ca II lines in Procyon. -We find that [Ca/Fe] = 0.50 $pm$ 0.09 in the early Galaxy, a value slightly higher than the previous LTE estimations. -The scatter of the ratios [X/Ca] is generally smaller than the scatter of the ratio [X/Mg] where X is a light metal (O, Na, Mg, Al, S, and K) with the exception of Al. These scatters cannot be explained by error of measurements, except for oxygen. Surprisingly, the scatter of [X/Fe] is always equal to, or even smaller than, the scatter around the mean value of [X/Ca]. -We note that at low metallicity, the wavelength of the Ca I resonance line is shifted relative to the (weaker) subordinate lines, a signature of the effect of convection. -The Ca abundance deduced from the Ca I resonance line (422.7 nm) is found to be systematically smaller at very low metallicity, than the abundance deduced from the subordinate lines.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا