ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a direct comparison between the observed star formation rate functions (SFRF) and the state-of-the-art predictions of semi-analytic models (SAM) of galaxy formation and evolution. We use the PACS Evolutionary Probe Survey (PEP) and Hersche l Multi-tiered Extragalactic Survey (HerMES) data-sets in the COSMOS and GOODS-South fields, combined with broad-band photometry from UV to sub-mm, to obtain total (IR+UV) instantaneous star formation rates (SFRs) for individual Herschel galaxies up to z~4, subtracted of possible active galactic nucleus (AGN) contamination. The comparison with model predictions shows that SAMs broadly reproduce the observed SFRFs up to z~2, when the observational errors on the SFR are taken into account. However, all the models seem to under-predict the bright-end of the SFRF at z>2. The cause of this underprediction could lie in an improper modelling of several model ingredients, like too strong (AGN or stellar) feedback in the brighter objects or too low fall-back of gas, caused by weak feedback and outflows at earlier epochs.
We study a sample of Herschel-PACS selected galaxies within the GOODS-South and the COSMOS fields in the framework of the PACS Evolutionary Probe (PEP) project. Starting from the rich multi-wavelength photometric data-sets available in both fields, w e perform a broad-band Spectral Energy Distribution (SED) decomposition to disentangle the possible active galactic nucleus (AGN) contribution from that related to the host galaxy. We find that 37 per cent of the Herschel-selected sample shows signatures of nuclear activity at the 99 per cent confidence level. The probability to reveal AGN activity increases for bright ($L_{rm 1-1000} > 10^{11} rm L_{odot}$) star-forming galaxies at $z>0.3$, becoming about 80 per cent for the brightest ($L_{rm 1-1000} > 10^{12} rm L_{odot}$) infrared (IR) galaxies at $z geq 1$. Finally, we reconstruct the AGN bolometric luminosity function and the super-massive black hole growth rate across cosmic time up to $z sim 3$ from a Far-Infrared (FIR) perspective. This work shows general agreement with most of the panchromatic estimates from the literature, with the global black hole growth peaking at $z sim 2$ and reproducing the observed local black hole mass density with consistent values of the radiative efficiency $epsilon_{rm rad}$ ($sim$0.07).
We exploit the deep and extended far infrared data sets (at 70, 100 and 160 um) of the Herschel GTO PACS Evolutionary Probe (PEP) Survey, in combination with the HERschel Multi tiered Extragalactic Survey (HerMES) data at 250, 350 and 500 um, to deri ve the evolution of the restframe 35 um, 60 um, 90 um, and total infrared (IR) luminosity functions (LFs) up to z~4. We detect very strong luminosity evolution for the total IR LF combined with a density evolution. In agreement with previous findings, the IR luminosity density increases steeply to z~1, then flattens between z~1 and z~3 to decrease at z greater than 3. Galaxies with different SEDs, masses and sSFRs evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to the IR luminosity density. Galaxies occupying the well established SFR/stellar mass main sequence (MS) are found to dominate both the total IR LF and luminosity density at all redshifts, with the contribution from off MS sources (0.6 dex above MS) being nearly constant (~20% of the total IR luminosity density) and showing no significant signs of increase with increasing z over the whole 0.8<z<2.2 range. Sources with mass in the 10< log(M/Msun) <11 range are found to dominate the total IR LF, with more massive galaxies prevailing at the bright end of the high-z LF. A two-fold evolutionary scheme for IR galaxies is envisaged: on the one hand, a starburst-dominated phase in which the SMBH grows and is obscured by dust, is followed by an AGN dominated phase, then evolving toward a local elliptical. On the other hand, moderately starforming galaxies containing a low-luminosity AGN have various properties suggesting they are good candidates for systems in a transition phase preceding the formation of steady spiral galaxies.
We empirically test the relation between the SFR(LIR) derived from the infrared luminosity, LIR, and the SFR(Ha) derived from the Ha emission line luminosity using simple conversion relations. We use a sample of 474 galaxies at z = 0.06 - 0.46 with b oth Ha detection (from 20k zCOSMOS survey) and new far-IR Herschel data (100 and 160 {mu}m). We derive SFR(Ha) from the Ha extinction corrected emission line luminosity. We find a very clear trend between E(B - V) and LIR that allows to estimate extinction values for each galaxy even if the Ha emission line measurement is not reliable. We calculate the LIR by integrating from 8 up to 1000 {mu}m the SED that is best fitting our data. We compare SFR(Ha) with the SFR(LIR). We find a very good agreement between the two SFR estimates, with a slope of m = 1.01 pm 0.03 in the SFR(LIR) vs SFR(Ha) diagram, a normalization constant of a = -0.08 pm 0.03 and a dispersion of sigma = 0.28 dex.We study the effect of some intrinsic properties of the galaxies in the SFR(LIR)-SFR(Ha) relation, such as the redshift, the mass, the SSFR or the metallicity. The metallicity is the parameter that affects most the SFR comparison. The mean ratio of the two SFR estimators log[SFR(LIR)/SFR(Ha)] varies by approx. 0.6 dex from metal-poor to metal-rich galaxies (8.1 < log(O/H) + 12 < 9.2). This effect is consistent with the prediction of a theoretical model for the dust evolution in spiral galaxies. Considering different morphological types, we find a very good agreement between the two SFR indicators for the Sa, Sb and Sc morphologically classified galaxies, both in slope and normalization. For the Sd, irregular sample (Sd/Irr), the formal best-fit slope becomes much steeper (m = 1.62 pm 0.43), but it is still consistent with 1 at the 1.5 sigma level, because of the reduced statistics of this sub-sample.
We have studied the evolution of high redshift quiescent galaxies over an effective area of ~1.7 deg^2 in the COSMOS field. Galaxies have been divided according to their star-formation activity and the evolution of the different populations has been investigated in detail. We have studied an IRAC (mag_3.6 < 22.0) selected sample of ~18000 galaxies at z > 1.4 with multi-wavelength coverage. We have derived accurate photometric redshifts (sigma=0.06) and other important physical parameters through a SED-fitting procedure. We have divided our sample into actively star-forming, intermediate and quiescent galaxies depending on their specific star formation rate. We have computed the galaxy stellar mass function of the total sample and the different populations at z=1.4-3.0. We have studied the properties of high redshift quiescent galaxies finding that they are old (1-4 Gyr), massive (log(M/M_sun)~10.65), weakly star forming stellar populations with low dust extinction (E(B-V) < 0.15) and small e-folding time scales (tau ~ 0.1-0.3 Gyr). We observe a significant evolution of the quiescent stellar mass function from 2.5 < z < 3.0 to 1.4 < z < 1.6, increasing by ~ 1 dex in this redshift interval. We find that z ~ 1.5 is an epoch of transition of the GSMF. The fraction of star-forming galaxies decreases from 60% to 20% from z ~ 2.5-3.0 to z ~ 1.4-1.6 for log(M/M_sun) > 11, while the quiescent population increases from 10% to 50% at the same redshift and mass intervals. We compare the fraction of quiescent galaxies derived with that predicted by theoretical models and find that the Kitzbichler & White (2007) model is the one that better reproduces the data. Finally, we calculate the stellar mass density of the star-forming and quiescent populations finding that there is already a significant number of quiescent galaxies at z > 2.5 (rho~6.0 MsunMpc^-3).
78 - C. Gruppioni 2011
We present a new backward evolution model for galaxies and AGNs in the infrared (IR). What is new in this model is the separate study of the evolutionary properties of the different IR populations (i.e. spiral galaxies, starburst galaxies, low-lumino sity AGNs, unobscured type 1 AGNs and obscured type 2 AGNs) defined through a detailed analysis of the spectral energy distributions (SEDs) of large samples of IR selected sources. The evolutionary parameters have been constrained by means of all the available observables from surveys in the mid- and far-IR (source counts, redshift and luminosity distributions, luminosity functions). By decomposing the SEDs representative of the three AGN classes into three distinct components (a stellar component emitting most of its power in the optical/near-IR, an AGN component due to hot dust heated by the central black hole peaking in the mid-IR, and a starburst component dominating the far-IR spectrum) we have disentangled the AGN contribution to the monochromatic and total IR luminosity emitted by the different populations considered in our model from that due to star-formation activity. We have then obtained an estimate of the total IR luminosity density (and star-formation density - SFD - produced by IR galaxies) and the first ever estimate of the black hole mass accretion density (BHAR) from the IR. The derived evolution of the BHAR is in agreement with estimates from X-rays, though the BHAR values we derive from IR are slightly higher than the X-ray ones. Finally, we have simulated source counts, redshift distributions and SFD and BHAR that we expect to obtain with the future cosmological Surveys in the mid-/far-IR that will be performed with JWST-MIRI and SPICA-SAFARI.
We combine near-to-mid-IR Spitzer data with shorter wavelength observations (optical to X-rays) to get insights on the properties of a sample of luminous, obscured Active Galactic Nuclei (AGN). We aim at modeling their broad-band Spectral Energy Dist ributions (SEDs) in order to estimate the main parameters related to the dusty torus. The sample comprises 16 obscured high-redshift (0.9<z<2.1) xray luminous quasars (L_2-10 ~ 10^44 erg s-1) selected from the HELLAS2XMM survey. The SEDs are described by a multi-component model including a stellar component, an AGN component and a starburst. The majority (~80%) of the sources show moderate optical depth (tau_9.7um<3) and the derived column densities N_H are consistent with the xray inferred values (10^22 <N_H< 3x10^23 cm-2) for most of the objects, confirming that the sources are moderately obscured Compton-thin AGN. Accretion luminosities in the range 5x10^44 < Lbol < 4x10^46 erg s-1 are inferred. We compare model luminosities with those obtained by integrating the observed SED, finding that the latter are lower by a factor of ~2 in the median. The discrepancy can be as high as an order of magnitude for models with high optical depth (tau_9.7um=10). The ratio between the luminosities obtained by the fitting procedure and from the observed SED suggest that, at least for Type~2 AGN, observed bolometric luminosities are likely to underestimate intrinsic ones and the effect is more severe for highly obscured sources. Bolometric corrections from the hard X-ray band are computed and have a median value of k_2-10kev ~ 20. The obscured AGN in our sample are characterized by relatively low Eddington ratios (median lambda_Edd~0.08). On average, they are consistent with the Eddington ratio increasing at increasing bolometric correction (e.g. Vasudevan & Fabiam 2009).
81 - C. Vignali 2009
We present multi-wavelength observations (from optical to sub-millimeter, including Spitzer and SCUBA) of H2XMMJ 003357.2-120038 (also GD158_19), an X-ray selected, luminous narrow-line (Type 2) quasar at z=1.957 selected from the HELLAS2XMM survey. Its broad-band properties can be reasonably well modeled assuming three components: a stellar component to account for the optical and near-IR emission, an AGN component (i.e., dust heated by an accreting active nucleus), dominant in the mid-IR, with an optical depth at 9.7 micron along the line of sight (close to the equatorial plane of the obscuring matter) of tau(9.7)=1 and a full covering angle of the reprocessing matter (torus) of 140 degrees, and a far-IR starburst component (i.e., dust heated by star formation) to reproduce the wide bump observed longward of 70 micron. The derived star-formation rate is about 1500 solar masses per year. The overall modeling indicates that GD158_19 is a high-redshift X-ray luminous, obscured quasar with coeval powerful AGN activity and intense star formation. It is probably caught before the process of expelling the obscuring gas has started, thus quenching the star formation.
We present the broad-band Spectral Energy Distributions (SEDs) of the largest available highly (72%) complete spectroscopic sample of mid-infrared (MIR) selected galaxies and AGN at intermediate redshift. The sample contains 203 extragalactic sources from the 15-micron survey in the ELAIS-SWIRE field S1, all with measured spectroscopic redshift. Most of these sources have full multi-wavelength coverage from the far-UV to the far-infrared and lie in the redshift range 0.1<z<1.3. Due to its size, this sample allows us for the first time to characterise the spectral properties of the sources responsible for the strong evolution observed in the MIR. Based on SED-fitting technique we have classified the MIR sources, identifying AGN signatures in about 50% of them. This fraction is significantly higher than that derived from optical spectroscopy (~29%) and is due in particular to the identification of AGN activity in objects spectroscopically classified as galaxies. It is likely that in most of our objects, the AGN is either obscured or of low-luminosity, and thus it does not dominate the energetic output at any wavelength, except in the MIR, showing up just in the range where the host galaxy SED has a minimum. The fraction of AGN strongly depends on the flux density, with that derived through the SED-fitting being about 20% at S(15)~0.5-1 mJy and gradually increasing up to 100% at S(15)>10 mJy, while that obtained from optical spectroscopy never being >30%, even at the higher flux densities. The results of this work will be very useful for updating all the models aimed at interpreting the deep infrared survey data and, in particular, for constraining the nature and the role of dust-obscured systems in the intermediate/high-redshift Universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا