ترغب بنشر مسار تعليمي؟ اضغط هنا

The continuous high-precision photometric observations provided by the CoRoT and Kepler space missions have allowed us to better understand the structure and dynamics of red giants using asteroseismic techniques. A small fraction of these stars shows dipole modes with unexpectedly low amplitudes. The reduction in amplitude is more pronounced for stars with higher frequency of maximum power. In this work we want to characterize KIC 8561221 in order to confirm that it is currently the least evolved star among this peculiar subset and to discuss several hypotheses that could help explain the reduction of the dipole mode amplitudes. We used Kepler short- and long-cadence data combined with spectroscopic observations to infer the stellar structure and dynamics of KIC 8561221. We then discussed different scenarios that could contribute to the reduction of the dipole amplitudes such as a fast rotating interior or the effect of a magnetic field on the properties of the modes. We also performed a detailed study of the inertia and damping of the modes. We have been able to characterize 37 oscillations modes, in particular, a few dipole modes above nu_max that exhibit nearly normal amplitudes. We have inferred a surface rotation period of around 91 days and uncovered the existence of a variation in the surface magnetic activity during the last 4 years. As expected, the internal regions of the star probed by the l = 2 and 3 modes spin 4 to 8 times faster than the surface. With our grid of standard models we are able to properly fit the observed frequencies. Our model calculation of mode inertia and damping give no explanation for the depressed dipole modes. A fast rotating core is also ruled out as a possible explanation. Finally, we do not have any observational evidence of the presence of a strong deep magnetic field inside the star.
In this paper we consider sequences of polynomials orthogonal with respect to certain discrete Laguerre-Sobolev inner product, with two perturbations (involving derivatives) located inside the oscillatory region for the classical Laguerre polynomials . We focus our attention on the representation of these polynomials in terms of the classical Laguerre polynomials and deduce the coefficients of their corresponding five-term recurrence relation, as well as the asymptotic behavior of these coefficients when the degree of the polynomials tends to infinity. Also, the outer relative asymptotics of orthogonal polynomials with respect to this discrete Sobolev inner product is analyzed.
A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed int o fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV.
We predict the enhanced transmissivity of modulated slabs of layered superconductors for terahertz radiation due to the diffraction of the incident wave and the resonance excitation of the eigenmodes. The electromagnetic field is transferred from the irradiated side of a slab of layered superconductor to the other one by excited waveguide modes (WGMs) which do not decay deep into the slab, contrary to metals, where the enhanced light transmission is caused by the excitation of the evanescent surface waves. We show that a series of resonance peaks (with $T sim 1$) can be observed in the dependence of the transmittance $T$ on the varying incidence angle $theta$, when the dispersion curve of the diffracted wave crosses successive dispersion curves for the WGMs.
We present an analysis of the pulsation behaviour of the Delta Scuti stars 7 Aql (HD 174532) and 8 Aql (HD 174589) -- a new variable star -- observed in the framework of STEPHI XII campaign during 2003 June--July. 183 hours of high precision photomet ry were acquired by using four-channel photometers at three sites on three continents during 21 days. The light curves and amplitude spectra were obtained following a classical scheme of multi-channel photometry. Observations in different filters were also obtained and analyzed. Six and three frequencies have been unambiguously detected above a 99% confidence level in the range 0.090 mHz--0.300 mHz and 0.100 mHz-- 0.145 mHz in 7 Aql and 8 Aql respectively. A comparison of observed and theoretical frequencies shows that 7 Aql and 8 Aql may oscillate with p modes of low radial orders, typical among Delta Scuti stars. In terms of radial oscillations the range of 8 Aql goes from n=1 to n=3 while for 7 Aql the range spans from n=4 to n=7. Non-radial oscillations have to be present in both stars as well. The expected range of excited modes according to a non adiabatic analysis goes from n=1 to n=6 in both stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا