ترغب بنشر مسار تعليمي؟ اضغط هنا

Opacity is a property of many plasmas, and it is normally expected that if an emission line in a plasma becomes optically thick, its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfe r calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depth. Previous observational studies have focused on stellar point sources, and here we investigate the spatially-resolved solar atmosphere using measurements of the I(1032 A)/I(1038 A) intensity ratio of O VI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument on board the Solar and Heliospheric Observatory (SoHO) satellite. We find several I(1032 A)/I(1038 A) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. Agreement between observation and theory is excellent, and confirms that the O VI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.
Radiative transfer calculations have predicted intensity enhancements for optically thick emission lines, as opposed to the normal intensity reductions, for astrophysical plasmas under certain conditions. In particular, the results are predicted to b e dependent both on the geometry of the emitting plasma and the orientation of the observer. Hence in principle the detection of intensity enhancement may provide a way of determining the geometry of an unresolved astronomical source. To investigate such enhancements we have analyzed a sample of active late-type stars observed in the far ultraviolet spectral region. Emission lines of O VI in the FUSE satellite spectra of epsilon Eri, II Peg and Prox Cen were searched for intensity enhancements due to opacity. We have found strong evidence for line intensity enhancements due to opacity during active or flare-like activity for all three stars. The O VI 1032/1038 line intensity ratios, predicted to have a value of 2.0 in the optically thin case, are found to be up to ~30% larger during several orbital phases. Our measurements, combined with radiative transfer models, allow us to constrain both the geometry of the O VI emitting regions in our stellar sources and the orientation of the observer. A spherical emitting plasma can be ruled out, as this would lead to no intensity enhancement. In addition, the theory tells us that the line-of-sight to the plasma must be close to perpendicular to its surface, as observations at small angles to the surface lead to either no intensity enhancement or the usual line intensity decrease over the optically thin value. For the future, we outline a laboratory experiment, that could be undertaken with current facilities, which would provide an unequivocal test of predictions of line intensity enhancement due to opacity, in particular the dependence on plasma geometry.
Aims: We generate theoretical ultraviolet and extreme-ultraviolet emission line ratios for O IV and show their strong versatility as electron temperature and density diagnostics for astrophysical plasmas. Methods: Recent fully relativistic calculatio ns of radiative rates and electron impact excitation cross sections for O IV, supplemented with earlier data for A-values and proton excitation rates, are used to derive theoretical O IV line intensity ratios for a wide range of electron temperatures and densities. Results: Diagnostic line ratios involving ultraviolet or extreme-ultraviolet transitions in O IV are presented, that are applicable to a wide variety of astrophysical plasmas ranging from low density gaseous nebulae to the densest solar and stellar flares. Comparisons with observational data, where available, show good agreement between theory and experiment, providing support for the accuracy of the diagnostics. However, diagnostics are also presented involving lines that are blended in existing astronomical spectra, in the hope this might encourage further observational studies at higher spectral resolution.
Fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 A wavelength range. A comparison of these with solar ac tive region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the transition at 195.32 A is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between Ne = 1E8 and 1E13 cm-3, and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine Ne, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 A line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74.
The role of optical Fe III absorption lines in B-type stars as iron abundance diagnostics is considered. To date, ultraviolet Fe lines have been widely used in B-type stars, although line blending can severely hinder their diagnostic power. Using opt ical spectra, covering a wavelength range ~ 3560 - 9200 A, a sample of Galactic B-type main-sequence and supergiant stars of spectral types B0.5 to B7 are investigated. A comparison of the observed Fe III spectra of supergiants, and those predicted from the model atmosphere codes TLUSTY (plane-parallel, non-LTE), with spectra generated using SYNSPEC (LTE), and CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In addition, a sample of main-sequence and supergiant objects, observed with FEROS, reveal LTE abundance estimates consistent with the Galactic environment and previous optical studies. Based on the present study, we list a number of Fe III transitions which we recommend for estimating the iron abundance from early B-type stellar spectra.
New fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251 - 361 A and 32 - 77 A portions of the extreme-ultraviolet (EU V) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32 - 49 A portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and observations of Capella from the Low Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50 - 77 A wavelength range, contrary to previous results. In particular, there is no evidence that the Fe XVI emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe XVI in ionization equilibrium, as suggested by earlier work.
High resolution optical and ultraviolet spectra of two B-type post-Asymptotic Giant Branch (post-AGB) stars in globular clusters, Barnard 29 in M 13 and ROA 5701 in omega Cen, have been analysed using model atmosphere techniques. The optical spectra have been obtained with FEROS on the ESO 2.2-m telescope and the 2d-Coude spectrograph on the 2.7-m McDonald telescope, while the ultraviolet observations are from the GHRS on the HST. Abundances of light elements (C, N, O, Mg, Al and S) plus Fe have been determined from the optical spectra, while the ultraviolet data provide additional Fe abundance estimates from Fe III absorption lines in the 1875-1900 {AA} wavelength region. A general metal underabundance relative to young B-type stars is found for both Barnard 29 and ROA 5701. These results are consistent with the metallicities of the respective clusters, as well as with previous studies of the objects. The derived abundance patterns suggest that the stars have not undergone a gas-dust separation, contrary to previous suggestions, although they may have evolved from the AGB before the onset of the third dredge-up. However, the Fe abundances derived from the HST spectra are lower than those expected from the metallicities of the respective clusters, by 0.5 dex for Barnard 29 and 0.8 dex for ROA 5701. A similar systematic underabundance is also found for other B-type stars in environments of known metallicity, such as the Magellanic Clouds. These results indicate that the Fe III ultraviolet lines may yield abundance values which are systematically too low by typically 0.6 dex and hence such estimates should be treated with caution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا