ترغب بنشر مسار تعليمي؟ اضغط هنا

99 - F. P. Gavriil 2008
We report detection of magnetar-like X-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be rotation-powered, has an inferred surface dipolar magnetic field of 4.9x10^13 G, hi gher than those of the vast majority of rotation-powered pulsars, but lower than those of the ~12 previously identified magnetars. The bursts were accompanied by a sudden flux increase and an unprecedented change in timing behavior. These phenomena lower the magnetic and rotational thresholds associated with magnetar-like behavior, and suggest that in neutron stars there exists a continuum of magnetic activity that increases with inferred magnetic field strength.
We report on 10 years of monitoring of the 8.7-s Anomalous X-ray Pulsar 4U 0142+61 using the Rossi X-Ray Timing Explorer (RXTE). This pulsar exhibited stable rotation from 2000 March until 2006 February: the RMS phase residual for a spin-down model w hich includes nu, nudot, and nuddot is 2.3%. We report a possible phase-coherent timing solution valid over a 10-yr span extending back to March 1996. A glitch may have occured between 1998 and 2000, but is not required by the existing timing data. The pulse profile has been evolving since 2000. In particular, the dip of emission between its two peaks got shallower between 2002 and 2006, as if the profile were evolving back to its pre-2000 morphology, following an earlier event, which possibly also included the glitch suggested by the timing data. These profile variations are seen in the 2-4 keV band but not in 6-8 keV. We also detect a slow increase in the pulsed flux between 2002 May and 2004 December, such that it has risen by 36+/-3% over 2.6 years in the 2-10 keV band. The pulsed flux variability and the narrow-band pulse profile changes present interesting challenges to aspects of the magnetar model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا