ترغب بنشر مسار تعليمي؟ اضغط هنا

195 - N. Sanna , E. Oliva , F. Massi 2014
HIRES, a high resolution spectrometer, is one of the first five instruments foreseen in the ESO roadmap for the E-ELT. This spectrograph should ideally provide full spectral coverage from the UV limit to 2.5 microns, with a resolving power from R$sim $10,000 to R$sim$100,000. At visual/blue wavelengths, where the adaptive optics (AO) cannot provide an efficient light-concentration, HIRES will necessarily be a bulky, seeing-limited instrument. The fundamental question, which we address in this paper, is whether the same approach should be adopted in the near-infrared range, or HIRES should only be equipped with compact infrared module(s) with a much smaller aperture, taking advantage of an AO-correction. The main drawbacks of a seeing-limited instrument at all wavelengths are: textit{i)} Lower sensitivities at wavelengths dominated by thermal background (red part of the K-band). textit{ii)} Much higher volumes and costs for the IR spectrograph module(s). The main drawbacks of using smaller, AO-fed IR module(s) are: textit{i)} Performances rapidly degrading towards shorter wavelengths (especially J e Y bands). textit{ii)} Different spatial sampling of extended objects (the optical module see a much larger area on the sky). In this paper we perform a trade-off analysis and quantify the various effects that contribute to improve or deteriorate the signal to noise ratio. In particular, we evaluate the position of the cross-over wavelength at which AO-fed instruments starts to outperform seeing-limited instruments. This parameter is of paramount importance for the design of the part of HIRES covering the K-band.
74 - M.T. Beltran 2012
We have mapped in the 2.7 mm continuum and 12CO with the PdBI the IR-dark tail that crosses the IC 1396N globule from south to north, and is the most extincted part of this cloud. These observations have allowed us to distinguish all possible associa tions of molecular hydrogen emission features by revealing the presence of two well-collimated low-mass protostellar outflows at the northern part of the globule. The outflows are located almost in the plane of the sky and are colliding with each other towards the position of a strong 2.12 microns H2 line emission feature.
112 - M.T. Beltran 2009
Context. IC 1396N is a bright-rimmed cloud associated with an intermediate-mass star-forming region, where a number of Herbig-Haro objects, H2 jet-like features, CO molecular outflows, and millimeter compact sources have been observed. Aims. To study in detail the complex structure of the IC 1396N core and the molecular outflows detected in the region and to reveal the presence of additional YSOs inside this globule. Methods. We carried out a deep survey of the IC 1396N region in the J, H, K broadband filters and deep high-angular resolution observations in the H2 narrowband filter with NICS at the TNG telescope. The completeness limits in the 2MASS standard are Ks~17.5, H~18.5 and J~19.5. Results. A total of 736 sources have been detected in all three bands within the area where the JHK images overlap. There are 128 sources detected only in HK, 67 detected only in K, and 79 detected only in H. We found only few objects exhibiting a Near-Infrared excess and no clear signs of clustering of sources towards the southern rim. In case of triggered star formation in the southern rim of the globule, this could be very recent, because it is not evidenced through Near-Infrared imaging alone. The H2 emission is complex and knotty and shows a large number of molecular hydrogen features spread over the region, testifying a recent star-formation activity throughout the whole globule. This emission is resolved into several chains or groups of knots that sometimes show a jet-like morphology. The shocked cloudlet model scenario previously proposed to explain the V-shaped morphology of the CO molecular outflow powered by the intermediate-mass YSO BIMA 2 seems to be confirmed by the presence of H2 emission at the position of the deflecting western clump. New possible flows have been discovered in the globule,
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا