ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of the photons [1,2] is a promising platform for investigations of quantum mechanical properties of motion of macroscopic bodies and thereby the limits of quantum mechanics [3,4]. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength towards the scale of the cavity damping rate. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities [5-8]. Addressing these issues, here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation pressure interaction energy by six orders of magnitude, allowing to approach the strong coupling regime, where a single quantum of vibrations shifts the cavity frequency by more than its linewidth. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping due to the two-level system. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.
165 - J. Kajala , F. Massel , P. Torma 2011
We consider a two-component Fermi gas in the presence of spin imbalance, modeling the system in terms of a one-dimensional attractive Hubbard Hamiltonian initially in the presence of a confining trap potential. With the aid of the time-evolving block decimation method, we investigate the dynamics of the initial state when the trap is switched off. We show that the dynamics of a gas initially in the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state is decomposed into the independent expansion of two fluids, namely the paired and the unpaired particles. In particular, the expansion velocity of the unpaired cloud is shown to be directly related to the FFLO momentum. This provides an unambiguous signature of the FFLO state in a remarkably simple way.
In this work we analyze the dynamical behavior of the collision between two clouds of fermionic atoms with opposite spin polarization. By means of the time-evolving block decimation (TEBD) numerical method, we simulate the collision of two one-dimens ional clouds in a lattice. There is a symmetry in the collision behaviour between the attractive and repulsive interactions. We analyze the pair formation dynamics in the collision region, providing a quantitative analysis of the pair formation mechanism in terms of a simple two-site model.
164 - J. Kajala , F. Massel , 2011
Expansion dynamics of interacting fermions in a lattice are simulated within the one-dimensional (1D) Hubbard model, using the essentially exact time-evolving block decimation (TEBD) method. In particular, the expansion of an initial band-insulator s tate is considered. We analyze the simulation results based on the dynamics of a two-site two-particle system, the so-called Hubbard dimer. Our findings describe essential features of a recent experiment on the expansion of a Fermi gas in a two-dimensional lattice. We show that the Hubbard-dimer dynamics, combined with a two-fluid model for the paired and non-paired components of the gas, gives an efficient description of the full dynamics. This should be useful for describing dynamical phenomena of strongly interacting Fermions in a lattice in general.
The Josephson effect is a manifestation of the macroscopic phase coherence of superconductors and superfluids. We propose that with ultracold Fermi gases one can realise a spin-asymmetric Josephson effect in which the two spin components of a Cooper pair are driven asymmetrically - corresponding to driving a Josephson junction of two superconductors with different voltages V_uparrow and V_downarrow for spin up and down electrons, respectively. We predict that the spin up and down components oscillate at the same frequency but with different amplitudes. Our results reveal that the standard description of the Josephson effect in terms of bosonic pair tunnelling is insufficient. We provide an intuitive interpretation of the Josephson effect as interference in Rabi oscillations of pairs and single particles, the latter causing the asymmetry.
Recently it has been suggested that fermions whose hopping amplitude is quenched to extremely low values provide a convenient source of local disorder for lattice bosonic systems realized in current experiment on ultracold atoms. Here we investigate the phase diagram of such systems, which provide the experimental realization of a Bose-Hubbard model whose local potentials are randomly extracted from a binary distribution. Adopting a site-dependent Gutzwiller description of the state of the system, we address one- and two-dimensional lattices and obtain results agreeing with previous findings, as far as the compressibility of the system is concerned. We discuss the expected peaks in the experimental excitation spectrum of the system, related to the incompressible phases, and the superfluid character of the {it partially compressible phases} characterizing the phase diagram of systems with binary disorder. In our investigation we make use of several analytical results whose derivation is described in the appendices, and whose validity is not limited to the system under concern.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا