ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - F. Mantovani 2015
We started a follow-up investigation of the Deep X-ray Radio Blazar Survey objects with declination >-10 deg. We undertook a survey with the EVN at 5GHz to make the first images of a complete sample of weak blazars, aiming at a comparison between hig h- and low-power samples of blazars. All of the 87 sources observed were detected. Point-like sources are found in 39 cases, and 48 show core-jet structure. According to the spectral indices previously obtained, 58 sources show a flat spectral index, and 29 sources show a steep spectrum or a spectrum peaking at a frequency around 1-2 GHz. Adding to the DXRBS objects we observed those already observed with ATCA in the southern sky, we found that 14 blazars and a SSRQ, are associated to gamma-ray emitters. We found that 56 sources can be considered blazars. We also detected 2 flat spectrum NLRGs. About 50% of the blazars associated to a gamma-ray object are BL Lacs, confirming that they are more likely detected among blazars gamma-emitters. We confirm the correlation found between the source core flux density and the gamma-ray photon fluxes down to fainter flux densities. We also found that weak blazars are also weaker gamma-ray emitters compared to bright blazars. Twenty-two sources are SSRQs or CSSs, and 7 are GPSs. The available X-ray ROSAT observations allow us to suggest that CSS and GPS quasars are not obscured by large column of cold gas surrounding the nuclei. We did not find any significant difference in X-ray luminosity between CSS and GPS quasars.
For Very Long Baseline Interferometry (VLBI), the fringe spacing is extremely narrow compared to the field of view imposed by the primary beam of each element. This means that an extremely large number of resolution units can potentially be imaged fr om a single observation. We implement and test a technique for efficiently and accurately imaging large VLBI datasets. The DiFX software correlator is used to generate a dataset with extremely high time and frequency resolution. This large dataset is then transformed and averaged multiple times to generate many smaller datasets, each with a phase centre located at a different area of interest. Results of an 8.4 GHz four-station VLBI observation of a field containing multiple sources are presented. Observations of the calibrator 3C345 were used for preliminary tests of accuracy of the shifting algorithm. A high level of accuracy was achieved, making the method suitable even for the most demanding astrometric VLBI observations. One target source (1320+299A) was detected and was used as a phase-reference calibrator in searching for further detections. An image containing 13 billion pixels was constructed by independently imaging 782 visibility datasets covering the entire primary beam of the array. Current implementations of this algorithm and possible future developments in VLBI data analysis are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا