ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a revised strong lensing mass reconstruction of the galaxy cluster RX J1347.5-1145. The X-ray luminous cluster at redshift z=0.451 has already been studied intensively in the past. Based on information of two such previous (strong-)lensing studies by Halkola et al. (2008) and Bradac et al. (2008), as well as by incorporating newly available data from the Cluster Lensing And Supernovae survey with Hubble (CLASH, Postman et al. 2012), we identified four systems of multiply lensed images (anew) in the redshift range 1.75 <= z <= 4.19. One multiple image system consists of in total eight multiply lensed images of the same source. The analysis based on a parametric mass model derived with the software glafic (Oguri 2010) suggests that the high image multiplicity is due to the source (z_phot = 4.19) being located on a so-called swallowtail caustic. In addition to the parametric mass model, we also employed a non-parametric approach using the software PixeLens (Saha and Williams 1997, 2004) in order to reconstruct the projected mass of the cluster using the same strong lensing data input. Both reconstructed mass models agree in revealing several mass components and a highly elliptic shape of the mass distribution. Furthermore, the projected mass inside, for example, a radius R ~35 arcsec ~200 kpc of the cluster for a source at redshift z=1.75 obtained with PixeLens exceeds the glafic estimate within the same radius by about 13 per cent. The difference could be related to the fundamental degeneracy involved when constraining dark matter substructures with gravitationally lensed arcs.
We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared proper ties. The photometric catalog consists of stars with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands. We compare the color magnitude diagrams and color-color diagrams to those of the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 um are a few very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy distributions, and all 3 known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A & F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا