ترغب بنشر مسار تعليمي؟ اضغط هنا

Natural landslides exhibit scaling properties revealed by power law relationships. These relationships include the frequency of the size (e.g., area, volume) of the landslides, and the rainfall conditions responsible for slope failures in a region. R easons for the scaling behavior of landslides are poorly known. We investigate the possibility of using the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability analysis code (TRIGRS), a consolidated, physically-based, numerical model that describes the stability/instability conditions of natural slopes forced by rainfall, to determine the frequency statistics of the area of the unstable slopes and the rainfall intensity (I) - duration (D) conditions that result in landslides in a region. We apply TRIGRS in a portion of the Upper Tiber River Basin, Central Italy. The spatially distributed model predicts the stability/instability conditions of individual grid cells, given the local terrain and rainfall conditions. We run TRIGRS using multiple, synthetic rainfall histories, and we compare the modeling results with empirical evidences of the area of landslides and of the rainfall conditions that have caused landslides in the study area. Our findings revealed that TRIGRS is capable of reproducing the frequency of the size of the patches of terrain predicted as unstable by the model, which match the frequency size statistics of landslides in the study area, and the mean rainfall D, I conditions that result in unstable slopes in the study area, which match rainfall I-D thresholds for possible landslide occurrence. Our results are a step towards understanding the mechanisms that give rise to landslide scaling properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا