ترغب بنشر مسار تعليمي؟ اضغط هنا

The potential for Planck to detect clusters of dusty, star-forming galaxies at z greater than 1 is tested by examining the Herschel-SPIRE images of Planck Early Release Compact Source Catalog (ERCSC) sources lying in fields observed by the HerMES sur vey. Of the 16 Planck sources that lie in the roughly 90 sq. deg. examined, we find that twelve are associated with single bright Herschel sources. The remaining four are associated with overdensities of Herschel sources, making them candidate clusters of dusty, starforming galaxies. We use complementary optical and NIR data for these clumps to test this idea, and find evidence for the presence of galaxy clusters in all four cases. We use photometric redshifts and red sequence galaxies to estimate the redshifts of these clusters, finding that they range from 0.8 to 2.3. These redshifts imply that the Herschel sources in these clusters, which contribute to the detected Planck flux, are forming stars very rapidly, with typical total cluster star formation rates greater than 1000Msun per yr. The high redshift clusters discovered in these observations are used to constrain the epoch of cluster galaxy formation, finding that the galaxies in our clusters are 1 to 1.5 Gy old at z about 1 to 2. Prospects for the discovery of further clusters of dusty galaxies are discussed, using not only all sky Planck surveys, but also deeper, smaller area, Herschel surveys.
58 - F. G. Braglia 2009
The current paradigm of cosmic formation and evolution of galaxy clusters foresees growth mostly through merging. Galaxies in the infall region or in the core of a cluster undergo transformations owing to different environmental stresses. For two X-r ay luminous clusters at redshift z ~ 0.3 with opposite X-ray morphologies, RXCJ0014.3-3022 and RXCJ2308.3-0211, we assess differences in galaxy populations as a function of cluster topography. Cluster large-scale structure and substructure are determined from the combined photometry in the B, V, and R bands, and from multi-object optical spectroscopy at low resolution. A spectral index analysis is performed, based on the [OII] and Hdelta features, and the D4000 break, available for more than 100 member galaxies per cluster. Combination of spectral indices and FUV-optical colours provides a picture of the star formation history in galaxies. In spite of the potential presence of a small fraction of galaxies with obscured star formation activity, the average star-formation history of cluster members is found to depend on cluster-centric distance and on substructure. There is a sharp increase in star formation activity along two well-defined filamentary structures of the merging cluster RXCJ0014.3-3022, out to its virial radius and beyond, produced by luminous (L ~ L*) and sub-L* galaxies. Conversely, the regular cool-core cluster RXCJ2308.3-0211 mostly hosts galaxies which either populate the red sequence or are becoming passive. These results suggest the existence of a correspondence between assembly state and overall age of the stellar populations of galaxies inside the virialized region and in the surrounding large scale structure of massive clusters at z ~ 0.3. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا