ترغب بنشر مسار تعليمي؟ اضغط هنا

We present VLT VIMOS, Keck DEIMOS and Keck LRIS multi-object spectra of 367 sources in the field of the z ~ 3.09 protocluster SSA22. Sources are spectroscopically classified via template matching, allowing new identifications for 206 extragalactic so urces, including 36 z > 2 Lyman-break galaxies (LBGs) and Lyman-alpha emitters (LAEs), 8 protocluster members, and 94 X-ray sources from the ~ 400 ks Chandra deep survey of SSA22. Additionally, in the area covered by our study, we have increased by ~ 4, 13, and 6 times the number of reliable redshifts of sources at 1.0 < z < 2.0, at z > 3.4, and with X-Ray emission, respectively. We compare our results with past spectroscopic surveys of SSA22 to investigate the completeness of the LBGs and the X-Ray properties of the new spectroscopically-classified sources in the SSA22 field.
The Circinus galaxy is one of the nearest obscured AGN, making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum a nd to derive physical parameters for the obscuring material. Chandras high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton-scattering by an optically-thick torus, where the intrinsic spectrum is a powerlaw of photon index $Gamma = 2.2-2.4$, the torus has an equatorial column density of $N_{rm H} = (6-10)times10^{24}$cm$^{-2}$ and the intrinsic AGN $2-10$ keV luminosity is $(2.3-5.1)times 10^{42}$ erg/s. These values place Circinus along the same relations as unobscured AGN in accretion rate-vs-$Gamma$ and $L_X$-vs-$L_{IR}$ phase space. NuSTARs high sensitivity and low background allow us to study the short time-scale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the the spectral fitting results.
We present XMM-Newton and Chandra observations of two low-metallicity cometary blue compact dwarf (BCD) galaxies, Mrk 59 and Mrk 71. The first BCD, Mrk 59, contains two ultraluminous X-ray (ULX) sources, IXO 72 and IXO 73, both associated with bright massive stars and H II complexes, as well as one fainter extended source associated with a massive H II complex at the head of the cometary structure. The low-metallicity of Mrk 59 appears to be responsible for the presence of the two ULXs. IXO 72 has varied little over the last 10 yr, while IXO 73 has demonstrated a variability factor of ~4 over the same period. The second BCD, Mrk 71, contains two faint X-ray point sources and two faint extended sources. One point source is likely a background AGN, while the other appears to be coincident with a very luminous star and a compact H II region at the head of the cometary structure. The two faint extended sources are also associated with massive H II complexes. Although both BCDs have the same metallicity, the three sources in Mrk 71 have X-ray luminosities ~1-2 orders of magnitude fainter than those in Mrk 59. The age of the starburst may play a role.
456 - A. D. Goulding 2012
We explore the origin of mid-infrared (mid-IR) dust extinction in all 20 nearby (z < 0.05) bona-fide Compton-thick (N_H > 1.5 x 10^24 cm^-2) AGN with hard energy (E > 10 keV) X-ray spectral measurements. We accurately measure the silicate absorption features at lambda~9.7um in archival low-resolution (R~57-127) Spitzer Infrared Spectrograph (IRS) spectroscopy, and show that only a minority (~45%) of nearby Compton-thick AGN have strong Si-absorption features (S_9.7 = ln(f_{int}/f_{obs}) > 0.5) which would indicate significant dust attenuation. The majority (~60%) are star-formation dominated (AGN:SB<0.5) at mid-IR wavelengths and lack the spectral signatures of AGN activity at optical wavelengths, most likely because the AGN emission-lines are optically-extinguished. Those Compton-thick AGN hosted in low-inclination angle galaxies exhibit a narrow-range in Si-absorption (S_9.7 ~ 0-0.3), which is consistent with that predicted by clumpy-torus models. However, on the basis of the IR spectra and additional lines of evidence, we conclude that the dominant contribution to the observed mid-IR dust extinction is dust located in the host galaxy (i.e., due to disturbed morphologies; dust-lanes; galaxy inclination angles) and not necessarily a compact obscuring torus surrounding the central engine.
We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D < 60 Mpc and low Galactic column densities of N_H < 5 X 10^20 cm^-2. The LIRGs in our sample have total infrared (8-1000um) luminos ities in the range of L_IR ~ (1-8) X 10^11 L_sol. The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei (AGNs) and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star-formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M*) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (LX) traces the combined emission from high mass X-ray binaries (HMXBs) and low mass X-ray binaries (LMXBs), and that the power output from these components are linearly correlated with SFR and M*, respectively, we constrain the relation LX = alpha M* + beta SFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of alpha = (9.05 +/- 0.37) X 10^28 ergs s^-1 Msol^-1 and beta = (1.62 +/- 0.22) X 10^39 ergs s^-1 (Msol yr^-1)^-1. This scaling provides a more physically meaningful estimate of LX, with ~0.1-0.2 dex less scatter, than a direct linear scaling with SFR (abridged).
We present a catalog of 9017 X-ray sources identified in Chandra observations of a 2 by 0.8 degree field around the Galactic center. We increase the number of known X-ray sources in the region by a factor of 2.5. The catalog incorporates all of the A CIS-I observations as of 2007 August, which total 2.25 Msec of exposure. At the distance to the Galactic center (8 kpc), we are sensitive to sources with luminosities >4e32 erg/s (0.5-8.0 keV; 90% confidence) over an area of one square degree, and up to an order of magnitude more sensitive in the deepest exposure (1.0 Msec) around Sgr A*. The positions of 60% of our sources are accurate to <1 (95% confidence), and 20% have positions accurate to <0.5. We search for variable sources, and find that 3% exhibit flux variations within an observation, 10% exhibit variations from observation-to-observation. We also find one source, CXOUGC J174622.7-285218, with a periodic 1745 s signal (1.4% chance probability), which is probably a magnetically-accreting cataclysmic variable. We compare the spatial distribution of X-ray sources to a model for the stellar distribution, and find 2.8 sigma evidence for excesses in the numbers of X-ray sources in the region of recent star formation encompassed by the Arches, Quintuplet, and Galactic center star clusters. These excess sources are also seen in the luminosity distribution of the X-ray sources, which is flatter near the Arches and Quintuplet than elsewhere in the field. These excess point sources, along with a similar longitudinal asymmetry in the distribution of diffuse iron emission that has been reported by other authors, probably have their origin in the young stars that are prominent at l~0.1 degree.
We present point-source catalogs for the ~2 Ms exposure of the Chandra Deep Field-South (CDF-S); this is one of the two most-sensitive X-ray surveys ever performed. The survey covers an area of ~436 arcmin^2 and reaches on-axis sensitivity limits of ~1.9x10^{-17} and ~1.3x10^{-16} ergs/cm^2/s for the 0.5-2.0 and 2-8 keV bands, respectively. Four hundred and sixty-two X-ray point sources are detected in at least one of three X-ray bands that were searched; 135 of these sources are new compared to the previous ~1 Ms CDF-S detections. Source positions are determined using centroid and matched-filter techniques; the median positional uncertainty is ~0.36. The X-ray-to-optical flux ratios of the newly detected sources indicate a variety of source types; ~55% of them appear to be active galactic nuclei while ~45% appear to be starburst and normal galaxies. In addition to the main Chandra catalog, we provide a supplementary catalog of 86 X-ray sources in the ~2 Ms CDF-S footprint that was created by merging the ~250 ks Extended Chandra Deep Field-South with the CDF-S; this approach provides additional sensitivity in the outer portions of the CDF-S. A second supplementary catalog that contains 30 X-ray sources was constructed by matching lower significance X-ray sources to bright optical counterparts (R<23.8); the majority of these sources appear to be starburst and normal galaxies. The total number of sources in the main and supplementary catalogs is 578. R-band optical counterparts and basic optical and infrared photometry are provided for the X-ray sources in the main and supplementary catalogs. We also include existing spectroscopic redshifts for 224 of the X-ray sources. (Abstract abridged)
77 - F. E. Bauer 2008
We report on new VLT optical spectroscopic and multi-wavelength archival observations of SN1996cr, a previously identified ULX known as Circinus Galaxy X-2. Our optical spectrum confirms SN1996cr as a bona fide type IIn SN, while archival imaging iso lates its explosion date to between 1995-02-28 and 1996-03-16. SN1996cr is one of the closest SNe (~3.8 Mpc) in the last several decades and in terms of flux ranks among the brightest radio and X-ray SNe ever detected. The wealth of optical, X-ray, and radio observations that exist for this source provide relatively detailed constraints on its post-explosion expansion and progenitor history, including an preliminary angular size constaint from VLBI. The archival X-ray and radio data imply that the progenitor of SN1996cr evacuated a large cavity just prior to exploding: the blast wave likely expanded for ~1-2 yrs before eventually striking the dense circumstellar material which surrounds SN1996cr. The X-ray and radio emission, which trace the progenitor mass-loss rate, have respectively risen by a factor of ~2 and remained roughly constant over the past 7 yr. This behavior is reminiscent of the late rise of SN1987A, but 1000 times more luminous and much more rapid to onset. Complex Oxygen line emission in the optical spectrum further hints at a possible concentric shell or ring-like structure. The discovery of SN1996cr suggests that a substantial fraction of the closest SNe observed in the last several decades have occurred in wind-blown bubbles. An Interplanetary Network position allows us to reject a tentative GRB association with BATSE 4B960202. [Abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا