ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the finite-energy density phase diagram of spinless fermions with attractive interactions in one dimension in the presence of uncorrelated diagonal disorder. Unlike the case of repulsive interactions, a delocalized Luttinger-liquid phase per sists at weak disorder in the ground state, which is a well-known result. We revisit the ground-state phase diagram and show that the recently introduced occupation-spectrum discontinuity computed from the eigenspectrum of one-particle density matrices is noticeably smaller in the Luttinger liquid compared to the localized regions. Moreover, we use the functional renormalization scheme to study the finite-size dependence of the conductance, which resolves the existence of the Luttinger liquid as well and is computationally cheap. Our main results concern the finite-energy density case. Using exact diagonalization and by computing various established measures of the many-body localization-delocalization transition, we argue that the zero-temperature Luttinger liquid smoothly evolves into a finite-energy density ergodic phase without any intermediate phase transition.
Motivated by recent experiments with ultra-cold quantum gases in optical lattices we study the decay of the staggered moment in the one-dimensional Fermi-Hubbard model starting from a perfect Neel state using exact diagonalization and the iTEBD metho d. This extends previous work in which the same problem has been addressed for pure spin Hamiltonians. As a main result, we show that the relaxation dynamics of the double occupancy and of the staggered moment are different. The former is controlled by the nearest-neighbor tunneling rate while the latter is much slower and strongly dependent on the interaction strength, indicating that spin excitations are important. This difference in characteristic energy scales for the fast charge dynamics and the much slower spin dynamics is also reflected in the real-time evolution of nearest-neighbor density and spin correlations. A very interesting time dependence emerges in the von Neumann entropy, which at short times increases linearly with a slope proportional to the tunneling matrix element while the long-time growth of entanglement is controlled by spin excitations. Our predictions for the different relaxation dynamics of the staggered moment and the double occupancy should be observable in state-of-the art optical lattice experiments. We further compare time averages of the double occupancy to both the expectation values in the canonical and diagonal ensemble, which quantitatively disagree with each other on finite systems. We relate the question of thermalization to the eigenstate thermalization hypothesis.
104 - F. Dorfner , L. Vidmar , C. Brockt 2014
We study the real-time dynamics of a highly excited charge carrier coupled to quantum phonons via a Holstein-type electron-phonon coupling. This is a prototypical example for the non-equilibrium dynamics in an interacting many-body system where exces s energy is transferred from electronic to phononic degrees of freedom. We use diagonalization in a limited functional space (LFS) to study the non-equilibrium dynamics on a finite one-dimensional chain. This method agrees with exact diagonalization and the time-evolving block decimation method, in both the relaxation regime and the long-time stationary state, and among these three methods it is the most efficient and versatile one for this problem. We perform a comprehensive analysis of the time evolution by calculating the electron, phonon and electron-phonon coupling energies, and the electronic momentum distribution function. The numerical results are compared to analytical solutions for short times, for a small hopping amplitude and for a weak electron-phonon coupling. In the latter case, the relaxation dynamics obtained from the Boltzmann equation agrees very well with the LFS data. We also study the time dependence of the eigenstates of the single-site reduced density matrix, which defines so-called optimal phonon modes. We discuss their structure in non-equilibrium and the distribution of their weights. Our analysis shows that the structure of optimal phonon modes contains very useful information for the interpretation of the numerical data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا