ترغب بنشر مسار تعليمي؟ اضغط هنا

We set up a tunneling approach to the analogue Hawking effect in the case of models of analogue gravity which are affected by dispersive effects. An effective Schroedinger-like equation for the basic scattering phenomenon IN->P+N*, where IN is the in cident mode, P is the positive norm reflected mode, and N* is the negative norm one, signalling particle creation, is derived, aimed to an approximate description of the phenomenon. Horizons and barrier penetration play manifestly a key-role in giving rise to pair-creation. The non-dispersive limit is also correctly recovered. Drawbacks of the model are also pointed out and a possible solution ad hoc is suggested.
A generalized Euler parameterization of a compact Lie group is a way for parameterizing the group starting from a maximal Lie subgroup, which allows a simple characterization of the range of parameters. In the present paper we consider the class of a ll compact connected Lie groups. We present a general method for realizing their generalized Euler parameterization starting from any symmetrically embedded Lie group. Our construction is based on a detailed analysis of the geometry of these groups. As a byproduct this gives rise to an interesting connection with certain Dyson integrals. In particular, we obtain a geometry based proof of a Macdonald conjecture regarding the Dyson integrals correspondent to the root systems associated to all irreducible symmetric spaces. As an application of our general method we explicitly parameterize all groups of the class of simple, simply connected compact Lie groups. We provide a table giving all necessary ingredients for all such Euler parameterizations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا