ترغب بنشر مسار تعليمي؟ اضغط هنا

We study numerically the non-equilibrium critical properties of the Ising model defined on direct products of graphs, obtained from factor graphs without phase transition (Tc = 0). On this class of product graphs, the Ising model features a finite te mperature phase transition, and we find a pattern of scaling behaviors analogous to the one known on regular lattices: Observables take a scaling form in terms of a function L(t) of time, with the meaning of a growing length inside which a coherent fractal structure, the critical state, is progressively formed. Computing universal quantities, such as the critical exponents and the limiting fluctuation-dissipation ratio X_infty, allows us to comment on the possibility to extend universality concepts to the critical behavior on inhomogeneous substrates.
We study the phase-ordering kinetics following a temperature quench of O(N) continuous symmetry models with and 4 on graphs. By means of extensive simulations, we show that the global pattern of scaling behaviours is analogous to the one found on usu al lattices. The exponent a for the integrated response function and the exponent z, describing the growing length, are related to the large scale topology of the networks through the spectral dimension and the fractal dimension alone, by means of the same expressions as are provided by the analytic solution of the inifnite N limit. This suggests that the large N value of these exponents could be exact for every N.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا