ترغب بنشر مسار تعليمي؟ اضغط هنا

The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran Sasso underground laboratory by both the activation and the prompt gamma detection methods. The present work reports full details of the prompt gamma detection experiment, focusing on the determination of the systematic uncertainty. The final data, including activation measurements at LUNA, are compared with the results of the last generation experiments and two different theoretical models are used to obtain the S-factor at solar energies.
Recently, the LUNA collaboration has carried out a high precision measurement on the 3He(alpha,gamma)7Be reaction cross section with both activation and on-line gamma-detection methods at unprecedented low energies. In this paper the results obtained with the activation method are summarized. The results are compared with previous activation experiments and the zero energy extrapolated astrophysical S factor is determined using different theoretical models.
Solar neutrino fluxes depend both on astrophysical and on nuclear physics inputs, namely on the cross sections of the reactions responsible for neutrino production inside the Solar core. While the flux of solar 8B neutrinos has been recently measured at Superkamiokande with a 3.5% uncertainty and a precise measurement of 7Be neutrino flux is foreseen in the next future, the predicted fluxes are still affected by larger errors. The largest nuclear physics uncertainty to determine the fluxes of 8B and 7Be neutrinos comes from the 3He(alpha,gamma)7Be reaction. The uncertainty on its S-factor is due to an average discrepancy in results obtained using two different experimental approaches: the detection of the delayed gamma rays from 7Be decay and the measurement of the prompt gamma emission. Here we report on a new high precision experiment performed with both techniques at the same time. Thanks to the low background conditions of the Gran Sasso LUNA accelerator facility, the cross section has been measured at Ecm = 170, 106 and 93 keV, the latter being the lowest interaction energy ever reached. The S-factors from the two methods do not show any discrepancy within the experimental errors. An extrapolated S(0)= 0.560+/-0.017 keV barn is obtained. Moreover, branching ratios between the two prompt gamma-transitions have been measured with 5-8% accuracy.
In this paper we investigate the optimal control problem for a class of stochastic Cauchy evolution problem with non standard boundary dynamic and control. The model is composed by an infinite dimensional dynamical system coupled with a finite dimens ional dynamics, which describes the boundary conditions of the internal system. In other terms, we are concerned with non standard boundary conditions, as the value at the boundary is governed by a different stochastic differential equation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا