ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the effects of motor-generated stresses in disordered three dimensional fiber networks using a combination of a mean-field, effective medium theory, scaling analysis and a computational model. We find that motor activity controls the elastic ity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of non-affine strain fluctuations as a susceptibility to motor stress.
Motivated by recent experiments showing the buckling of microtubules in cells, we study theoretically the mechanical response of, and force propagation along elastic filaments embedded in a non-linear elastic medium. We find that, although embedded m icrotubules still buckle when their compressive load exceeds the critical value $f_c$ found earlier, the resulting deformation is restricted to a penetration depth that depends on both the non-linear material properties of the surrounding cytoskeleton, as well as the direct coupling of the microtubule to the cytoskeleton. The deformation amplitude depends on the applied load $f$ as $(f- f_c)^{1/2}$. This work shows how the range of compressive force transmission by microtubules can be as large as tens of microns and is governed by the mechanical coupling to the surrounding cytoskeleton.
Biological activity gives rise to non-equilibrium fluctuations in the cytoplasm of cells; however, there are few methods to directly measure these fluctuations. Using a reconstituted actin cytoskeleton, we show that the bending dynamics of embedded m icrotubules can be used to probe local stress fluctuations. We add myosin motors that drive the network out of equilibrium, resulting in an increased amplitude and modified time-dependence of microtubule bending fluctuations. We show that this behavior results from step-like forces on the order of 10 pN driven by collective motor dynamics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا