ترغب بنشر مسار تعليمي؟ اضغط هنا

The emph{GW} approximation takes into account electrostatic self-interaction contained in the Hartree potential through the exchange potential. However, it has been known for a long time that the approximation contains self-screening error as evident in the case of the hydrogen atom. When applied to the hydrogen atom, the emph{GW} approximation does not yield the exact result for the electron removal spectra because of the presence of self-screening: the hole left behind is erroneously screened by the only electron in the system which is no longer present. We present a scheme to take into account self-screening and show that the removal of self-screening is equivalent to including exchange diagrams, as far as self-screening is concerned. The scheme is tested on a model hydrogen dimer and it is shown that the scheme yields the exact result to second order in $(U_{0}-U_{1})/2t$ where $U_{0}$ and $U_{1}$ are respectively the onsite and offsite Hubbard interaction parameters and $t$ the hopping parameter.
We present a method for calculating the electronic structure of correlated materials based on a truly first-principles LDA+U scheme. Recently we suggested how to calculate U from first-principles, using a method which we named constrained RPA (cRPA). The input is simply the Kohn-Sham eigenfunctions and eigenvalues obtained within the LDA. In our proposed self-consistent LDA+U scheme, we calculate the LDA+U eigenfunctions and eigenvalues and use these to extract U. The updated U is then used in the next iteration to obtain a new set of eigenfunctions and eigenvalues and the iteration is continued until convergence is achieved. The most significant result is that our numerical approach is indeed stable: it is possible to find the effective exchange and correlation interaction matrix in a self-consistent way, resulting in a significant improvement over the LDA results, regarding both the bandgap in NiO and the f-band exchange spin-splitting in Gd, but some discrepancies still remain.
Starting from the full many-body Hamiltonian of interacting electrons the effective self-energy acting on electrons residing in a subspace of the full Hilbert space is derived. This subspace may correspond to, for example, partially filled narrow ban ds, which often characterize strongly correlated materials. The formalism delivers naturally the frequency-dependent effective interaction (the Hubbard U) and provides a general framework for constructing theoretical models based on the Green function language. It also furnishes a general scheme for first-principles calculations of complex systems in which the main correlation effects are concentrated on a small subspace of the full Hilbert space.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا