ترغب بنشر مسار تعليمي؟ اضغط هنا

The atmospheres of substellar objects contain clouds of oxides, iron, silicates, and other refractory condensates. Water clouds are expected in the coolest objects. The opacity of these `dust clouds strongly affects both the atmospheric temperature-p ressure profile and the emergent flux. Thus any attempt to model the spectra of these atmospheres must incorporate a cloud model. However the diversity of cloud models in atmospheric simulations is large and it is not always clear how the underlying physics of the various models compare. Likewise the observational consequences of different modeling approaches can be masked by other model differences, making objective comparisons challenging. In order to clarify the current state of the modeling approaches, this paper compares five different cloud models in two sets of tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and T-dwarf atmospheric (temperature T, pressure p, convective velocity vconv)-structures. Test case 2 compares complete model atmosphere results for given (effective temperature Teff, surface gravity log g). All models agree on the global cloud structure but differ in opacity-relevant details like grain size, amount of dust, dust and gas-phase composition. Comparisons of synthetic photometric fluxes translate into an modelling uncertainty in apparent magnitudes for our L-dwarf (T-dwarf) test case of 0.25 < Delta m < 0.875 (0.1 < Delta m M 1.375) taking into account the 2MASS, the UKIRT WFCAM, the Spitzer IRAC, and VLT VISIR filters with UKIRT WFCAM being the most challenging for the models. (abr.)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا