ترغب بنشر مسار تعليمي؟ اضغط هنا

Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspect ed in order to determine if they are real pulsars. This process can be labor intensive. In this paper, we introduce an algorithm called PEACE (Pulsar Evaluation Algorithm for Candidate Extraction) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command enter programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68% of the student-identified pulsars within the top 0.17% of sorted candidates, 95% within the top 0.34%, and 100% within the top 3.7%. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.
Pulsar timing observations are used to place constraints on the rate of coalescence of supermassive black-hole (SMBH) binaries as a function of mass and redshift. In contrast to the indirect constraints obtained from other techniques, pulsar timing o bservations provide a direct constraint on the black-hole merger rate. This is possible since pulsar timing is sensitive to the gravitational waves (GWs) emitted by these sources in the final stages of their evolution. We find that upper bounds calculated from the recently published Parkes Pulsar Timing Array data are just above theoretical predictions for redshifts below 10. In the future, with improved timing precision and longer data spans, we show that a non-detection of GWs will rule out some of the available parameter space in a particular class of SMBH binary merger models. We also show that if we can time a set of pulsars to 10ns timing accuracy, for example, using the proposed Square Kilometre Array, it should be possible to detect one or more individual SMBH binary systems.
We present the sensitivity of the Parkes Pulsar Timing Array to gravitational waves emitted by individual super-massive black-hole binary systems in the early phases of coalescing at the cores of merged galaxies. Our analysis includes a detailed stud y of the effects of fitting a pulsar timing model to non-white timing residuals. Pulsar timing is sensitive at nanoHertz frequencies and hence complementary to LIGO and LISA. We place a sky-averaged constraint on the merger rate of nearby ($z < 0.6$) black-hole binaries in the early phases of coalescence with a chirp mass of $10^{10},rmn{M}_odot$ of less than one merger every seven years. The prospects for future gravitational-wave astronomy of this type with the proposed Square Kilometre Array telescope are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا