ترغب بنشر مسار تعليمي؟ اضغط هنا

It was first observed in the 1970s that the dwarf galaxies surrounding our Milky Way, so-called satellites, appear to be arranged in a thin, vast plane. Similar discoveries have been made around additional galaxies in the local Universe such as Andro meda, Centaurus A, and potentially M83. In the specific cases with available kinematic data, the dwarf satellites also appear to preferentially co-orbit their massive host galaxy. Planes of satellites are rare in the lambda cold dark matter ($Lambda$CDM) paradigm, although they may be a natural consequence of projection effects. Such a phase-space correlation, however, remains difficult to explain. In this work we analyzed the 2D spatial distribution of 2210 dwarf galaxies around early-type galaxies (ETGs) in the low-to-medium density fields of the Mass Assembly of early-Type GaLAxies with their fine Structures (MATLAS) survey. Under the assumption that the dwarfs are satellite members of the central massive ETG, we identified flattened structures using both a variation in the Hough transform and total least square (TLS) fitting. In 119 satellite systems, we find 31 statistically significant flattened dwarf structures using a combination of both methods with subsequent Monte Carlo (MC) simulations with random data. The vast majority of these dwarf structures lie within the estimated virial radii of the massive host. The major axes of these systems are aligned better than 30{deg} with the estimated orientation of the large-scale structure in nine (50%) cases. Additional distance measurements and future kinematic studies will be required to confirm the planar nature of these structures and to determine if they are corotating systems.
100 - F. R. Marleau 2006
We present observations at 3.6, 4.5, 5.8, 8, 24, 70 & 160um of NGC 205, the dwarf elliptical companion of M31, obtained with the Spitzer Space Telescope. The point sources subtracted images at 8 and 24um display a complex and fragmented infrared emis sion coming from both very small dust particles and larger grains. The extended dust emission is spatially concentrated in three main emission regions, seen at all wavelengths from 8 to 160um. These regions lie approximately along NGC 205s semi-major axis and range from ~100 to 300 pc in size. Based on our mid-to-far infrared flux density measurements alone, we derive a total dust mass estimate of the order of 3.2e4 solar masses, mainly at a temperature of ~20K. The gas mass associated with this component matches the predicted mass returned by the dying stars from the last burst of star formation in NGC 205 (~0.5 Gyr ago). Analysis of the Spitzer data combined with previous 1.1mm observations over a small central region or Core (18 diameter), suggest the presence of very cold (~12K) dust and a dust mass about sixteen times higher than is estimated from the Spitzer measurements alone. Assuming a gas to dust mass ratio of 100, these two datasets, i.e.with and without the millimeter observations, suggest a total gas mass range of 3.2e6 to 5e7 solar masses.
We present the reduction of the 24 micron data obtained during the first cosmological survey performed by the Spitzer Space Telescope (First Look Survey, FLS). The survey consists of a shallow observation of 2.5x2 sq deg centered at 17h18m +59d30m (m ain survey) and a deeper observation of 1x0.5 sq deg centered at 17h17m +59d45m(verification survey). Issues with the reduction of the 24 micron MIPS data are discussed and solutions to attenuate instrumental effects are proposed and applied to the data. Approximately 17000 sources are extracted with a SNR greater than five. The photometry of the point sources is evaluated through PSF fitting using an empirical PSF derived from the data. Aperture corrections and the absolute calibration have been checked using stars in the field. Astrometric and photometric errors depend on the SNR of the source varying between 0.35-1 arcsec and 5-15%, respectively, for sources detected at 20-5 sigma. The flux of the 123 extended sources have been estimated through aperture photometry. The extended sources cover less than 0.3% of the total area of the survey. Based on simulations, the main and verification surveys are 50% complete at 0.3 and 0.15 mJy, respectively. Counterparts have been searched for in optical and radio catalogs. More than 80% of the 24 micron sources have a reliable optical counterpart down to R=25.5. 16% of the sources have a 20 cm counterpart down to 0.1 mJy and ~ 80% of the radio-infrared associations have a reliable optical counterpart. A residual map is obtained by subtracting point sources detected at the 3-sigma level and interpolating the regions occupied by extended sources. Several galactic clouds with low and intermediate velocities are identified by comparison with neutral Hydrogen data from this field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا