ترغب بنشر مسار تعليمي؟ اضغط هنا

We have measured quantum interference between two single microwave photons trapped in a superconducting resonator, whose frequencies are initially about 6 GHz apart. We accomplish this by use of a parametric frequency conversion process that mixes th e mode currents of two cavity harmonics through a superconducting quantum interference device, and demonstrate that a two-photon entanglement operation can be performed with high fidelity.
The ability to coherently couple arbitrary harmonic oscillators in a fully-controlled way is an important tool to process quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems by use of a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by use of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by use of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~ 7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different colours. This parametric interaction can be described as a beam-splitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.
We report on direct measurements of the electronic shot noise of a quantum point contact at frequencies nu in the range 4-8 GHz. The very small energy scale used ensures energy independent transmissions of the few transmitted electronic modes and the ir accurate knowledge. Both the thermal energy and the quantum point contact drain-source voltage Vds are comparable to the photon energy hnu leading to observation of the shot noise suppression when $V_{ds}<h u/e$. Our measurements provide the first complete test of the finite frequency shot noise scattering theory without adjustable parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا