ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the effect of an attractive interaction between parallel-aligned polymers, which are perpendicularly grafted on a substrate. Such an attractive interaction could be due to, e.g., reversible cross-links. The competition between permanent gr afting favoring a homogeneous state of the polymer brush and the attraction, which tends to induce in-plane collapse of the aligned polymers, gives rise to an instability of the homogeneous phase to a bundled state. In this latter state the in-plane translational symmetry is spontaneously broken and the density is modulated with a finite wavelength, which is set by the length scale of transverse fluctuations of the grafted polymers. We analyze the instability for two models of aligned polymers: directed polymers with a line tension and weakly bending chains with a bending stiffness.
We study the effect of quenched randomness in the arc-length dependent spontaneous curvature of a wormlike chain under tension. In the weakly bending approximation in two dimensions, we obtain analytic results for the force-elongation curve and the w idth of transverse fluctuations. We compare quenched and annealed disorder and conclude that the former cannot always be reduced to a simple change in the stiffness of the pure system. We also discuss the effect of a random transverse force on the stretching response of a wormlike chain without spontaneous curvature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا