ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit coupled superconductors are potentially interesting candidates for realizing topological and potentially non-Abelian states with Majorana Fermions. We argue that time-reversal broken spin-orbit coupled superconductors generically can be ch aracterized as having sub-gap states that are bound to localized non-magnetic impurities. Such bound states, which are referred to as Shiba states, can be detected as sharp resonances in the tunneling spectrum of the spin-orbit coupled superconductors. The Shiba state resonance can be tuned using a gate-voltage or a magnetic field from being at the edge of the gap at zero magnetic fields to crossing zero energy when the Zeeman splitting is tuned into the topological superconducting regime. The zero-crossing signifies a Fermion parity changing first order quantum phase transition, which is characterized by a Pfaffian topological invariant. These zero-crossings of the impurity level can be used to locally characterize the topological superconducting state from tunneling experiments.
We examine spinor Bose-Einstein condensates in optical superlattices theoretically using a Bose-Hubbard Hamiltonian that takes spin effects into account. Assuming that a small number of spin-1 bosons is loaded in an optical potential, we study single -particle tunneling that occurs when one lattice site is ramped up relative to a neighboring site. Spin-dependent effects modify the tunneling events in a qualitative and quantitative way. Depending on the asymmetry of the double well different types of magnetic order occur, making the system of spin-1 bosons in an optical superlattice a model for mesoscopic magnetism. We use a double-well potential as a unit cell for a one-dimensional superlattice. Homogeneous and inhomogeneous magnetic fields are applied and the effects of the linear and the quadratic Zeeman shifts are examined. We also investigate the bipartite entanglement between the sites and construct states of maximal entanglement. The entanglement in our system is due to both orbital and spin degrees of freedom. We calculate the contribution of orbital and spin entanglement and show that the sum of these two terms gives a lower bound for the total entanglement.
In this paper we study nonequilibrium dynamics of one dimensional Bose gas from the general perspective of dynamics of integrable systems. After outlining and critically reviewing methods based on inverse scattering transform, intertwining operators, q-deformed objects, and extended dynamical conformal symmetry, we focus on the form-factor based approach. Motivated by possible applications in nonlinear quantum optics and experiments with ultracold atoms, we concentrate on the regime of strong repulsive interactions. We consider dynamical evolution starting from two initial states: a condensate of particles in a state with zero momentum and a condensate of particles in a gaussian wavepacket in real space. Combining the form-factor approach with the method of intertwining operator we develop a numerical procedure which allows explicit summation over intermediate states and analysis of the time evolution of non-local density-density correlation functions. In both cases we observe a tendency toward formation of crystal-like correlations at intermediate time scales.
Spin noise spectroscopy with a single laser beam is demonstrated theoretically to provide a direct probe of the spatial correlations of cold fermionic gases. We show how the generic many-body phenomena of anti-bunching, pairing, antiferromagnetic, an d algebraic spin liquid correlations can be revealed by measuring the spin noise as a function of laser width, temperature, and frequency.
Condensates of atoms with spins can have vortices of several types; these are related to the symmetry group of the atoms ground state. We discuss how, when a condensate is placed in a small magnetic field that breaks the spin symmetry, these vortices may form bound states. Using symmetry classification of vortex-charge and rough estimates for vortex interactions, one can show that some configurations that are stable at zero temperature can decay at finite temperatures by crossing over energy barriers. Our focus is cyclic spin 2 condensates, which have tetrahedral symmetry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا