ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic fields in the Milky Way are present on a wide variety of sizes and strengths, influencing many processes in the Galactic ecosystem such as star formation, gas dynamics, jets, and evolution of supernova remnants or pulsar wind nebulae. Observ ation methods are complex and indirect; the most used of these are a grid of rotation measures of unresolved polarized extragalactic sources, and broadband polarimetry of diffuse emission. Current studies of magnetic fields in the Milky Way reveal a global spiral magnetic field with a significant turbulent component; the limited sample of magnetic field measurements in discrete objects such as supernova remnants and HII regions shows a wide variety in field configurations; a few detections of magnetic fields in Young Stellar Object jets have been published; and the magnetic field structure in the Galactic Center is still under debate. The SKA will unravel the 3D structure and configurations of magnetic fields in the Milky Way on sub-parsec to galaxy scales, including field structure in the Galactic Center. The global configuration of the Milky Way disk magnetic field, probed through pulsar RMs, will resolve controversy about reversals in the Galactic plane. Characteristics of interstellar turbulence can be determined from the grid of background RMs. We expect to learn to understand magnetic field structures in protostellar jets, supernova remnants, and other discrete sources, due to the vast increase in sample sizes possible with the SKA. This knowledge of magnetic fields in the Milky Way will not only be crucial in understanding of the evolution and interaction of Galactic structures, but will also help to define and remove Galactic foregrounds for a multitude of extragalactic and cosmological studies.
The Fermi Bubbles are enigmatic gamma-ray features of the Galactic bulge. Both putative activity (within $sim$ few $times$ Myr) connected to the Galactic center super-massive black hole and, alternatively, nuclear star formation have been claimed as the energising source of the Bubbles. Likewise, both inverse-Compton emission by non-thermal electrons (`leptonic models) and collisions between non-thermal protons and gas (`hadronic models) have been advanced as the process supplying the Bubbles gamma -ray emission. An issue for any steady state hadronic model is that the very low density of the Bubbles plasma seems to require that they accumulate protons over a multi-Gyr timescale, much longer than other natural timescales occurring in the problem. Here we present a hadronic model where the timescale for generating the Bubbles hadronic gamma -ray emission is $sim$ few $times 10^8$ years. Our model invokes collapse of the Bubbles thermally-unstable plasma, leading to an accumulation of cosmic rays and magnetic field into localised, warm ($sim 10^4$ K), and likely filamentary condensations of higher density gas. Under the condition that these filaments are supported by non-thermal pressure, we can predict the hadronic emission from the Bubbles to be $L_gamma simeq 2 times 10^{37}$ erg/s $ dot{M}_mathrm{in}/(0.1 M_{Sun}/$ year $) T_mathrm{FB}^2/(3.5 times 10^7 K) ^2 M_{fil}/M_{pls}$ ; precisely their observed luminosity (normalizing to the star-formation-driven mass flux into the Bubbles and their measured plasma temperature and adopting the further result that the mass in the filaments, $M_{fil}$ is approximately equal to that of the Bubbles plasma, $M_{pls}$).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا