ترغب بنشر مسار تعليمي؟ اضغط هنا

105 - Rui Wang , Zhe Xing , Erwu Liu 2021
Intelligent reflecting surface (IRS) is a novel burgeoning concept, which possesses advantages in enhancing wireless communication and user localization, while maintaining low hardware cost and energy consumption. Herein, we establish an IRS-aided mm Wave-MIMO based joint localization and communication system (IMM-JLCS), and probe into its performance evaluation and optimization design. Specifically, first, we provide the signal, channel and estimation error models, and contrive the working process of the IMM-JLCS in detail. Then, by configuring appropriate IRS phase shifts, we derive the closed-form expressions of the Cramer-Rao Lower Bound (CRLB) of the position/orientation estimation errors and the effective achievable data rate (EADR), with respect to the time allocation ratio of the beam alignment and localization stage (BALS). Subsequently, we investigate the trade-off between the two performance metrics, for which we propose a joint optimization algorithm. Finally, we carry out simulations and comparisons to view the trade-off and validate the effectiveness of the proposed algorithm, in the presence of distinct levels of estimation uncertainty and user mobility. Our results demonstrate that the proposed algorithm can find the joint optimal solution for the position/orientation estimation accuracy and EADR, with its optimization performance being robust to slight localization or channel estimation errors and user mobility.
82 - Yiming Liu , Erwu Liu , Rui Wang 2020
To achieve the joint active and passive beamforming gains in the reconfigurable intelligent surface assisted millimeter wave system, the reflected cascade channel needs to be accurately estimated. Many strategies have been proposed in the literature to solve this issue. However, whether the Cramer-Rao lower bound (CRLB) of such estimation is achievable still remains uncertain. To fill this gap, we first convert the channel estimation problem into a sparse signal recovery problem by utilizing the properties of discrete Fourier transform matrix and Kronecker product. Then, a joint typicality based estimator is utilized to carry out the signal recovery task. We show that, through both mathematical proofs and numerical simulations, the solution proposed in this letter can in fact asymptotically achieve the CRLB.
130 - Yiming Liu , Erwu Liu , Rui Wang 2020
The advantages of millimeter-wave and large antenna arrays technologies for accurate wireless localization received extensive attentions recently. However, how to further improve the accuracy of wireless localization, even in the case of obstructed l ine-of-sight, is largely undiscovered. In this paper, the reconfigurable intelligent surface (RIS) is introduced into the system to make the positioning more accurate. First, we establish the three-dimensional RIS-assisted wireless localization channel model. After that, we derive the Fisher information matrix and the Cramer-Rao lower bound for evaluating the estimation of absolute mobile station position. Finally, we propose an alternative optimization method and a gradient decent method to optimize the reflect beamforming, which aims to minimize the Cramer-Rao lower bound to obtain a more accurate estimation. Our results show that the proposed methods significantly improve the accuracy of positioning, and decimeter-level or even centimeter-level positioning can be achieved by utilizing the RIS with a large number of reflecting elements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا