ترغب بنشر مسار تعليمي؟ اضغط هنا

Severe thunderstorms can have devastating impacts. Concurrently high values of convective available potential energy (CAPE) and storm relative helicity (SRH) are known to be conducive to severe weather, so high values of PROD=$sqrt{mathrm{CAPE}} time s$SRH have been used to indicate high risk of severe thunderstorms. We consider the extreme values of these three variables for a large area of the contiguous US over the period 1979-2015, and use extreme-value theory and a multiple testing procedure to show that there is a significant time trend in the extremes for PROD maxima in April, May and August, for CAPE maxima in April, May and June, and for maxima of SRH in April and May. These observed increases in CAPE are also relevant for rainfall extremes and are expected in a warmer climate, but have not previously been reported. Moreover, we show that the El Ni~no-Southern Oscillation explains variation in the extremes of PROD and SRH in February. Our results suggest that the risk from severe thunderstorms in April and May is increasing in parts of the US where it was already high, and that the risk from storms in February tends to be higher over the main part of the region during La Ni~na years. Our results differ from those obtained in earlier studies using extreme-value techniques to analyze a quantity similar to PROD.
We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown--Resnick and Smith fields, are very popular in spatial extremes. We focus on the two most popular unbiased stochastic derivative estimation approaches: the likelihood ratio method (LRM) and the infinitesimal perturbation analysis (IPA). LRM requires the multivariate density of the max-stable field to be explicit, and IPA necessitates the computation of the derivative with respect to the parameters for each simulated value. We propose convenient and tractable conditions ensuring the validity of LRM and IPA in the cases of the Brown--Resnick and Smith field, respectively. Obtaining such conditions is intricate owing to the very structure of max-stable fields. Then we focus on risk and dependence measures, which constitute one of the several frameworks where our theoretical results can be useful. We perform a simulation study which shows that both LRM and IPA perform well in various configurations, and provide a real case study that is valuable for the insurance industry.
84 - Erwan Koch 2018
A meticulous assessment of the risk of impacts associated with extreme wind events is of great necessity for populations, civil authorities as well as the insurance industry. Using the concept of spatial risk measure and related set of axioms introdu ced by Koch (2017, 2019), we quantify the risk of losses due to extreme wind speeds. The insured cost due to wind events is proportional to the wind speed at a power ranging typically between 2 and 12. Hence we first perform a detailed study of the correlation structure of powers of the Brown-Resnick max-stable random fields and look at the influence of the power. Then, using the latter results, we thoroughly investigate spatial risk measures associated with variance and induced by powers of max-stable random fields. In addition, we show that spatial risk measures associated with several classical risk measures and induced by such cost fields satisfy (at least part of) the previously mentioned axioms under conditions which are generally satisfied for the risk of damaging extreme wind speeds. In particular, we specify the rates of spatial diversification in different cases, which is valuable for the insurance industry.
105 - Erwan Koch 2018
An accurate assessment of the risk of extreme environmental events is of great importance for populations, authorities and the banking/insurance/reinsurance industry. Koch (2017) introduced a notion of spatial risk measure and a corresponding set of axioms which are well suited to analyze the risk due to events having a spatial extent, precisely such as environmental phenomena. The axiom of asymptotic spatial homogeneity is of particular interest since it allows one to quantify the rate of spatial diversification when the region under consideration becomes large. In this paper, we first investigate the general concepts of spatial risk measures and corresponding axioms further and thoroughly explain the usefulness of this theory for both actuarial science and practice. Second, in the case of a general cost field, we give sufficient conditions such that spatial risk measures associated with expectation, variance, Value-at-Risk as well as expected shortfall and induced by this cost field satisfy the axioms of asymptotic spatial homogeneity of order $0$, $-2$, $-1$ and $-1$, respectively. Last but not least, in the case where the cost field is a function of a max-stable random field, we provide conditions on both the function and the max-stable field ensuring the latter properties. Max-stable random fields are relevant when assessing the risk of extreme events since they appear as a natural extension of multivariate extreme-value theory to the level of random fields. Overall, this paper improves our understanding of spatial risk measures as well as of their properties with respect to the space variable and generalizes many results obtained in Koch (2017).
Max-stable random fields are very appropriate for the statistical modelling of spatial extremes. Hence, integrals of functions of max-stable random fields over a given region can play a key role in the assessment of the risk of natural disasters, mea ning that it is relevant to improve our understanding of their probabilistic behaviour. For this purpose, in this paper, we propose a general central limit theorem for functions of stationary max-stable random fields on $mathbb{R}^d$. Then, we show that appropriate functions of the Brown-Resnick random field with a power variogram and of the Smith random field satisfy the central limit theorem. Another strong motivation for our work lies in the fact that central limit theorems for random fields on $mathbb{R}^d$ have been barely considered in the literature. As an application, we briefly show the usefulness of our results in a risk assessment context.
Max-stable processes are central models for spatial extremes. In this paper, we focus on some space-time max-stable models introduced in Embrechts et al. (2016). The processes considered induce discrete-time Markov chains taking values in the space o f continuous functions from the unit sphere of $mathbb{R}^3$ to $(0, infty)$. We show that these Markov chains are geometrically ergodic. An interesting feature lies in the fact that the state space is not locally compact, making the classical methodology inapplicable. Instead, we use the fact that the state space is Polish and apply results presented in Hairer (2010).
Natural disasters may have considerable impact on society as well as on (re)insurance industry. Max-stable processes are ideally suited for the modeling of the spatial extent of such extreme events, but it is often assumed that there is no temporal d ependence. Only a few papers have introduced spatio-temporal max-stable models, extending the Smith, Schlather and Brown-Resnick spatial processes. These models suffer from two major drawbacks: time plays a similar role as space and the temporal dynamics is not explicit. In order to overcome these defects, we introduce spatio-temporal max-stable models where we partly decouple the influence of time and space in their spectral representations. We introduce both continuous and discrete-tim
232 - Erwan Koch 2015
The risk of extreme environmental events is of great importance for both the authorities and the insurance industry. This paper concerns risk measures in a spatial setting, in order to introduce the spatial features of damages stemming from environme ntal events into the measure of the risk. We develop a new concept of spatial risk measure, based on the spatially aggregated loss over the region of interest, and propose an adapted set of axioms for these spatial risk measures. These axioms quantify the sensitivity of the risk measure with respect to the space and are especially linked to spatial diversification. The proposed model for the cost underlying our definition of spatial risk measure involves applying a damage function to the environmental variable considered. We build and theoretically study concrete examples of spatial risk measures based on the indicator function of max-stable processes exceeding a given threshold. Some interpretations in terms of insurance are provided.
We test the hypothesis that interconnections across financial institutions can be explained by a diversification motive. This idea stems from the empirical evidence of the existence of long-term exposures that cannot be explained by a liquidity motiv e (maturity or currency mismatch). We model endogenous interconnections of heterogenous financial institutions facing regulatory constraints using a maximization of their expected utility. Both theoretical and simulation-based results are compared to a stylized genuine financial network. The diversification motive appears to plausibly explain interconnections among key players. Using our model, the impact of regulation on interconnections between banks -currently discussed at the Basel Committee on Banking Supervision- is analyzed.
Accurate stochastic simulations of hourly precipitation are needed for impact studies at local spatial scales. Statistically, hourly precipitation data represent a difficult challenge. They are non-negative, skewed, heavy tailed, contain a lot of zer os (dry hours) and they have complex temporal structures (e.g., long persistence of dry episodes). Inspired by frailty-contagion approaches used in finance and insurance, we propose a multi-site precipitation simulator that, given appropriate regional atmospheric variables, can simultaneously handle dry events and heavy rainfall periods. One advantage of our model is its conceptual simplicity in its dynamical structure. In particular, the temporal variability is represented by a common factor based on a few classical atmospheric covariates like temperatures, pressures and others. Our inference approach is tested on simulated data and applied on measurements made in the northern part of French Brittany.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا