ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the effect of adding to a directed chain of interconnected systems a directed feedback from the last element in the chain to the first. The problem is closely related to the fundamental question of how a change in network topology may influe nce the behavior of coupled systems. We begin the analysis by investigating a simple linear system. The matrix that specifies the system dynamics is the transpose of the network Laplacian matrix, which codes the connectivity of the network. Our analysis shows that for any nonzero complex eigenvalue $lambda$ of this matrix, the following inequality holds: $frac{|Im lambda |}{|Re lambda |} leq cotfrac{pi}{n}$. This bound is sharp, as it becomes an equality for an eigenvalue of a simple directed cycle with uniform interaction weights. The latter has the slowest decay of oscillations among all other network configurations with the same number of states. The result is generalized to directed rings and chains of identical nonlinear oscillators. For directed rings, a lower bound $sigma_c$ for the connection strengths that guarantees asymptotic synchronization is found to follow a similar pattern: $sigma_c=frac{1}{1-cosleft( 2pi /nright)} $. Numerical analysis revealed that, depending on the network size $n$, multiple dynamic regimes co-exist in the state space of the system. In addition to the fully synchronous state a rotating wave solution occurs. The effect is observed in networks exceeding a certain critical size. The emergence of a rotating wave highlights the importance of long chains and loops in networks of oscillators: the larger the size of chains and loops, the more sensitive the network dynamics becomes to removal or addition of a single connection.
This supplement illustrates application of adaptive observer design from (Tyukin et al, 2013) for systems which are not uniquely identifiable. It also provides an example of adaptive observer design for a magnetic bearings benchmark system (Lin, Knospe, 2000).
120 - Erik Steur , Ivan Tyukin , 2009
We discuss synchronization in networks of neuronal oscillators which are interconnected via diffusive coupling, i.e. linearly coupled via gap junctions. In particular, we present sufficient conditions for synchronization in these networks using the t heory of semi-passive and passive systems. We show that the conductance-based neuronal models of Hodgkin-Huxley, Morris-Lecar, and the popular reduced models of FitzHugh-Nagumo and Hindmarsh-Rose all satisfy a semi-passivity property, i.e. that is the state trajectories of such a model remain oscillatory but bounded provided that the supplied (electrical) energy is bounded. As a result, for a wide range of coupling configurations, networks of these oscillators are guaranteed to possess ultimately bounded solutions. Moreover, we demonstrate that when the coupling is strong enough the oscillators become synchronized. Our theoretical conclusions are confirmed by computer simulations with coupled HR and ML oscillators. Finally we discuss possible instabilities in networks of oscillators induced by the diffusive coupling.
We consider the problem of asymptotic reconstruction of the state and parameter values in systems of ordinary differential equations. A solution to this problem is proposed for a class of systems of which the unknowns are allowed to be nonlinearly pa rameterized functions of state and time. Reconstruction of state and parameter values is based on the concepts of weakly attracting sets and non-uniform convergence and is subjected to persistency of excitation conditions. In absence of nonlinear parametrization the resulting observers reduce to standard estimation schemes. In this respect, the proposed method constitutes a generalization of the conventional canonical adaptive observer design.
We consider the problem of asymptotic convergence to invariant sets in interconnected nonlinear dynamic systems. Standard approaches often require that the invariant sets be uniformly attracting. e.g. stable in the Lyapunov sense. This, however, is n either a necessary requirement, nor is it always useful. Systems may, for instance, be inherently unstable (e.g. intermittent, itinerant, meta-stable) or the problem statement may include requirements that cannot be satisfied with stable solutions. This is often the case in general optimization problems and in nonlinear parameter identification or adaptation. Conventional techniques for these cases rely either on detailed knowledge of the systems vector-fields or require boundeness of its states. The presently proposed method relies only on estimates of the input-output maps and steady-state characteristics. The method requires the possibility of representing the system as an interconnection of a stable, contracting, and an unstable, exploratory part. We illustrate with examples how the method can be applied to problems of analyzing the asymptotic behavior of locally unstable systems as well as to problems of parameter identification and adaptation in the presence of nonlinear parametrizations. The relation of our results to conventional small-gain theorems is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا