ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivated by recent experiments, we analyse the stability of a three-dimensional Bose-Einstein condensate (BEC) loaded in a periodically driven one-dimensional optical lattice. Such periodically driven systems do not have a thermodynamic ground state , but may have a long-lived steady state which is an eigenstate of a Floquet Hamiltonian. We explore collisional instabilities of the Floquet ground state which transfer energy into the transverse modes. We calculate decay rates, finding that the lifetime scales as the inverse square of the scattering length and inverse of the peak three- dimensional density. These rates can be controlled by adding additional transverse potentials.
We model the dynamics of condensation in a bimodal trap, consisting of a large reservoir region, and a tight dimple whose depth can be controlled. Experimental investigations have found that such dimple traps provide an efficient means of achieving c ondensation. In our kinetic equations, we include two- and three-body processes. The two-body processes populate the dimple, and lead to loss when one of the colliding atoms is ejected from the trap. The three-body processes produce heating and loss. We explain the principal trends, give a detailed description of the dynamics, and provide quantitative predictions for timescales and condensate yields. From these simulations, we extract optimal parameters for future experiments.
Motivated by recent experimental observations (C.V. Parker {it et al.}, Nature Physics, {bf 9}, 769 (2013)), we analyze the stability of a Bose-Einstein condensate (BEC) in a one-dimensional lattice subjected to periodic shaking. In such a system the re is no thermodynamic ground state, but there may be a long-lived steady-state, described as an eigenstate of a Floquet Hamiltonian. We calculate how scattering processes lead to a decay of the Floquet state. We map out the phase diagram of the system and find regions where the BEC is stable and regions where the BEC is unstable against atomic collisions. We show that Parker et al. perform their experiment in the stable region, which accounts for the long life-time of the condensate ($sim$ 1 second). We also estimate the scattering rate of the bosons in the region where the BEC is unstable.
We use variational methods to study a spin impurity in a 1D Bose lattice gas. Both in the strongly interacting superfluid regime and the Mott regime we find that the impurity binds with a hole, forming a polaron. Our calculations for the dispersion o f the polaron are consistent with recent experiments by Fukuhara et. al. [Nature Phys. 9, 235 (2013)] and give a better understanding of their numerical simulations. We find that for sufficiently weak interactions there are ranges of momentum for which the polaron is unstable. We propose experimentally studying the stability of the polaron by measuring the correlation between the impurity and holes. We also study two interacting impurities, finding stable bipolarons for sufficiently strong interactions.
We calculate the effect of interactions on the expansion of ultracold atoms from a single site of an optical lattice. We use these results to predict how interactions influence the interference pattern observed in a time of flight experiment. We find that for typical interaction strengths their influence is negligible, yet that they reduce visibility near a scattering resonance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا