ترغب بنشر مسار تعليمي؟ اضغط هنا

Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of $10^{-9}$ require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 hour exposure on a 10-meter telescope (1000 hours of exposure on a 40-meter telescope) potentially capable of measuring the redshift of a galaxy to a precision of $10^{-8}$ (few $times 10^{-10}$). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.
Our observations of the Universe are fundamentally anisotropic, with data from galaxies separated transverse to the line of sight coming from the same epoch while that from galaxies separated parallel to the line of sight coming from different times. Moreover, galaxy velocities along the line of sight change their redshift, giving redshift space distortions. We perform a full two-dimensional anisotropy analysis of galaxy clustering data, fitting in a substantially model independent manner the angular diameter distance D_A, Hubble parameter H, and growth rate ddelta/dln a without assuming a dark energy model. The results demonstrate consistency with LCDM expansion and growth, hence also testing general relativity. We also point out the interpretation dependence of the effective redshift z_eff, and its cosmological impact for next generation surveys.
Cluster abundances are oddly insensitive to canonical early dark energy. Early dark energy with sound speed equal to the speed of light cannot be distinguished from a quintessence model with the equivalent expansion history for $z<2$ but negligible e arly dark energy density, despite the different early growth rate. However, cold early dark energy, with a sound speed much smaller than the speed of light, can give a detectable signature. Combining cluster abundances with cosmic microwave background power spectra can determine the early dark energy fraction to 0.3 % and distinguish a true sound speed of 0.1 from 1 at 99 % confidence. We project constraints on early dark energy from the Euclid cluster survey, as well as the Dark Energy Survey, using both current and projected Planck CMB data, and assess the impact of cluster mass systematics. We also quantify the importance of dark energy perturbations, and the role of sound speed during a crossing of $w=-1$.
126 - Sudeep Das , Eric V. Linder 2012
Cosmic microwave background polarization encodes information not only on the early universe but also dark energy, neutrino mass, and gravity in the late universe through CMB lensing. Ground based surveys such as ACTpol, PolarBear, SPTpol significantl y complement cosmological constraints from the Planck satellite, strengthening the CMB dark energy figure of merit and neutrino mass constraints by factors of 3-4. This changes the dark energy probe landscape. We evaluate the state of knowledge in 2017 from ongoing experiments including dark energy surveys (supernovae, weak lensing, galaxy clustering), fitting for dynamical dark energy, neutrino mass, and a modified gravitational growth index. Adding a modest strong lensing time delay survey improves those dark energy constraints by a further 32%, and an enhanced low redshift supernova program improves them by 26%.
Galileon gravity is a robust theoretical alternative to general relativity with a cosmological constant for explaining cosmic acceleration, with interesting properties such as having second order field equations and a shift symmetry. While either its predictions for the cosmic expansion or growth histories can approach standard Lambda CDM, we demonstrate the incompatibility of both doing so simultaneously. Already current observational constraints can severely disfavor an entire class of Galileon gravity models that do not couple directly to matter, ruling them out as an alternative to Lambda CDM.
Galileon gravity offers a robust gravitational theory for explaining cosmic acceleration, having a rich phenomenology of testable behaviors. We explore three classes of Galileon models -- standard uncoupled, and linearly or derivatively coupled to ma tter -- investigating the expansion history with particular attention to early time and late time attractors, as well as the linear perturbations. From the relativistic and nonrelativistic Poisson equations we calculate the generalizations of the gravitational strength (Newtons constant), deriving its early and late time behavior. By scanning through the parameters we derive distributions of the gravitational strength at various epochs and trace the paths of gravity in its evolution. Using ghost-free and stability criteria we restrict the allowed parameter space, finding in particular that the linear and derivative coupled models are severely constrained by classical instabilities in the early universe.
We test Einstein gravity using cosmological observations of both expansion and structure growth, including the latest data from supernovae (Union2.1), CMB (WMAP7), weak lensing (CFHTLS) and peculiar velocity of galaxies (WiggleZ). We fit modified gra vity parameters of the generalized Poisson equations simultaneously with the effective equation of state for the background evolution, exploring the covariances and model dependence. The results show that general relativity is a good fit to the combined data. Using a Pad{e} approximant form for the gravity deviations accurately captures the time and scale dependence for theories like $f(R)$ and DGP gravity, and weights high and low redshift probes fairly. For current observations, cosmic growth and expansion can be fit simultaneously with little degradation in accuracy, while removing the possibility of bias from holding one aspect fixed.
Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of ph ysics affecting growth - dynamical dark energy, extended gravity, neutrino masses, and spatial curvature - we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area. Finally, we examine the robustness of results for different fiducial cosmologies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا