ترغب بنشر مسار تعليمي؟ اضغط هنا

58 - James P. Lloyd 2013
This white paper discusses a repurposed mission for the Kepler spacecraft that focusses on solving outstanding problems in planet formation and evolution by targeting the study of the hot Jupiter population of young stars. This mission can solve the question of the mode of migration of hot Jupiters, address the problem of whether Jupiters form by hot-start (gravitational instability) or cold-start (core accretion) mechanisms, and provide a wealth of data on the early stages of planetary system evolution during the active phases of stars which impact planetary habitability. In one year of observations of three weeks dwell time per field, Kepler would increase by more than an order of magnitude the number of known hot Jupiters, which can be followed up with fast cadence observations to to search for transit timing variations and to perform asteroseismological characterization of the host stars. This mission scenario continues to operate Kepler in the photometric monitoring mode for which it was designed, and is generally flexible with regards to field selection enabling prioritization of fuel usage and attitude control constraints.
We present recent progress on quantitative estimation of stellar ages using ind icators such as theoretical evolutionary tracks, rotation, rotation-driven chrom ospheric and coronal activity, and lithium depletion. Our focus is on roughly so lar-mass and solar-metallicity stars younger than the Sun. We attempt to charac terize the systematic and random error sources and then derive best ages alo ng with the dispersion in age arising among the various age estimation methods. Our main application of these techniques is to the evolution of debris disks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا